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ABSTRACT 

Discs plastic composite-supports (PCS) containing 50% agricultural products and 

50% polypropylene (w/w) were produced by twin-screw high-temperature extrusion. PCS 

properties and ingredients (oat hulls, soybean hulls, yeast extract, soybean flour, dried red 

blood cells, bovine albumen, and/or salts) for Lactobacillus casei subsp. rhamnosus (ATCC 

11443) biofilm formation and L(+)-Iactic production was evaluated by two replications of a 

2^"' design. 

Soybean hulls, and salts decreased the hydrophobicity of PCS (P < 0.0001) and 

enhanced cells attachment (P < 0.03). Yeast extract enhanced the growth of free and attached 

cells in minimal medium (P < 0.0001). Bovine albumen blended with soybean hulls, yeast 

extract, soybean flour, and salts had the highest lactic acid concentration in the first (7.6 g/L) 

and twentieth (1.4 g/L) simulated repeated-batch fermentation. Under all conditions, 

suspended cells and polypropylene discs control gave negligible lactic-acid production and 

cell density. 

PCS blended with bovine albumen, red blood cells, and soybean flour-leached 

nutrients gradually (20 - 30% initial leached nitrogen) and could still maintain 1 g/L lactic 

acid and cell density (absorbance at 620 mn:0.4-0.6) after the twentieth 20-mL simulated-

repeated-batch fermentation. Polypropylene discs under all circumstances gave negligible 

lactic acid production and cell density. Lactic acid accumulation in PCS was shown to be 

mainly due to absorption and had no correlation with lactic acid production or biofilm 

formation. 
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PCS rings and discs with 35% soybean hulls, 5% yeast extract, 5% soybean flour, 5% 

dried bovine albumen, and 50% polypropylene were selected for long-term biofilm repeated-

batch fermentation at controlled pH (5) and temperature (37°C). The viable cells count on the 

PCS surface in 0.2,0.4, and 0.8% yeast extract (YE) Lactic-Acid-Fermentation (LAF) 

medium (8% glucose) was 7.1 x 10', 8.5 x 10®, and 2.4 x 10'° cfu/g PCS, respectively. PCS-

bioreactors in 0.4 and 0.8% YE LAF medium shortened the lag time by 3-fold and 6-fold, 

respectively. PCS-bioreactors, at all YE concentration, increased lactic acid productivity by 

40-70 %. PCS-bioreactors' total fermentation time with 0.2, 0.4, and 0.8% YE LAF medium 

were 1.4,2.1, and 2.6 times faster than that of the control (suspended cells bioreactor), 

respectively. PCS-bioreactors had its fastest productivity (4.26 g/L/h) at 10% starting 

glucose, whereas the control (2.78 g/L/h) was at 8%. PCS biofilm lactic-acid fermentation 

can drastically improve fermentation rate under reduced complex nutrient addition. 
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GENERAL INTRODUCTION 

Introduction 

The global market of lactic acid has been estimated to be growing at about 3 - 5 % 

annually, and lactic acid has been called a 'commodity chemical sleeping giant' due to its 

large potential market in the production of biodiegradable polylacticde polymers for the 

packaging industry [43]. Microbial fermentation is the only source for producing optically-

pure lactic acid isomers. Hence, in order for lactic acid to be competitive in the plastic 

conmiodity market, there is a need to develop advanced fermentation processes which yield a 

relatively pure and high lactic-acid concentration solution. 

Lactic acid production rates and concentration can be increased by increasing cell 

density in the fermentor. Cell immobilization is a common way to increase cell density, 

although industrial application of cell immobilization with calcium alginate beads and 

polyacrylamide gels are few. This is mainly due to the high cost of immobilization, mass-

transfer limitations, lack of stability of the biocatalysts, and changes in product pattern of 

reactions catalyzed by certain immobilized cells [43]. 

Biofilms are a natural form of cell immobililzation that results from microbial 

attachment to solid supports in submerged environment [18]. This increases the cell density 

and enables the biofilm population to withstand stresses such as pH change and starvation. 

Attachment of cells on supports to form biofilm depends largely on the formation of 
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extracellular polysaccharides and surface charge between the solid surface and the 

microorganisms [19]. Studies by Van Loosdrecht et al. [80] demonstrated that measurement 

of hydrophobicity of cell surfaces by contact-angle method gave more consistent results than 

methods such as the hexadecane test and partitioning of cells in the two-phase polyethylene 

glycol and dextran system. 

Previous studies in our laboratory had successftilly proved that biofilm fermentation 

with plastic-composite supports (PCS) chips containing 75% polypropylene (PP) and 25% 

agricultural material (w/w) benefitted lactic acid production. In pure- and mixed-culture 

continuous fermentation, 30 and 35 g/L/h productivity was achieved, respectively [25]. In 

addition, the PCS chips were shown to be effective in long-term (more than 2 months) 

repeated-batch lactic acid biofilm fermentation with both pure and mixed cultures [24]. 

However, medium channelling and clumping of cells among the PCS chips interfered with 

medium mixing, pH control, and ultimately, lactic acid production. Hence, the purpose of 

this research is to produce a new type of PCS that could enhance lactic acid production with 

no clumping and meditrai chaimelling problems. 

The specific objectives of this study were to develop method in producing ring and 

disc PCS containing 50 % polypropylene and 50 % agricultural products; to select the best 

PCS blend by the fractional factorial design method, to develop methods in evaluating the 

biofilm population, the nutrients leaching property, the hydrophobicity, the porosity, and 

lactic acid absorption property of the PCS; to verify the performance of the best PCS blend in 

long-term fermentation; and to evaluate factors such as yeast extract concentration, starting 

glucose concentration, and medium recyling rate for optimizing lactic acid fermentation. 
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Dissertation organization 

This dissertation follows an alternative format and is divided into three papers. Each 

paper contains Abstract, Introduction, Materials and Methods, Results, Discussion, 

Acknowledgement, and References with the tables and figures included at the end. The 

papers are written to conform to the specifications of Applied and Environmental 

Microbiology, the journal to which the papers have been submitted. A general introduction, 

chapters including a literature review, and a general conclusion are also included. 

References cited in those chapters follow the general conclusion. All experiments, data 

collection, and data analysis were performed by the candidate. 

Literature review 

Lactic acid 

Lactic acid or 2-hydroxypropionic acid is a naturally occurring organic acid that can 

be produced by fermentation or chemical synthesis. It is also a major metabolic uitermediate 

in most living organisms from anaerobic prokaryotes to human beings. Lactic acid was first 

isolated from sour milk by the Swedish chemist Scheel in 1780 [53]. It is one of the smallest 

molecule that exists in two optically active configurations, the L(+)- and D(-)-isomer (Fig.l). 
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COOH COOH 

H c OH OH C H 

CH3 CH3 

D(-)-Lactic acid L(+)-Lactic acid 

Fig. 1 Enantiomers of lactic acid [82], 

Economic importance of lactic acid 

The &st successful uses of lactic acid in the leather and textile industries began about 

1894 [33] and production levels were about 5 tons/yr [40]. Technical-grade lactic acid was 

used as a textile printing developer, and as an acidulent for deliming hides and dying wool. 

In 1942, about half of the 2.7 x 10^ kg/yr produced in the United States was used by the 

leather industry, and an emerging use in food products consumed about 20% [31], In 1982, 

world-wide production of lactic acid was 2.4 - 2.8 x IC kg/yr. More than 50% of the lactic 

acid produced was used in food as an acidulent and a preservative. The production of 

stearoyl-2-lactylates consimied another 20%. The rest of the lactic acid was used by the 

pharmaceutical industry and other industrial applications. In the 1990s, approximately 4 x 

lO"* tons of lactic acid is produced annually. The major worldwide producers of lactic acid 

are C.V. Chemie Combinatie Amsterdam, the Netherlands; Industria Quimica de Sintesis y 

Fermentacoes, Brazil; Luis Ayuso S.A., Spain; Mushaimo Chemical Lab, Ltd., Japan; and 

Sterling Chemicals Inc., United States [43,22], With the joining of Ecological Chemical 
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Products (EcoChem), Archer Daniels Midland Company, and Cargill into the manufacturer 

list during the 1990's, United States has shifted from a lactic acid importer to a lactic-acid 

self-sufficient nation with export potential [43]. 

Lactic acid and the food industry 

The use of lactic acid in food and food-related applications accounts for 

approximately 85% of the lactic acid demand in the United States. The nonvolatile and 

odorless lactic acid is classified as GRAS (generally recognized as safe) food additive by the 

FDA in the U.S. 

Lactic acid is a very good preservative and pickling agent for sauerkraut, olives, and 

pickled vegetables. It is also used as an acidulent, a flavoring agent, a pH buffering agent or 

an inhibitor of bacterial spoilage in a wide variety of processed foods, such as candy, breads, 

and bakery products, soft drinks, soups, sherbets, dairy products, beer, jams and jellies, 

mayonnaise, and processed eggs [82]. 

More than 50% of the lactic acid for food-related uses goes to the production of 

emulsifying agents, especially for the bakery goods. The four important emulsifying agents 

from lactic acid are calcium and sodium, stearoyl-2-lactylate, glyceryl lactostearate, and 

glyceryl lactopalmitate [82]. Calcium stearoyl lactylates is a very good dough conditioner, 

and sodium stearoyl-2-lactylate is both a conditioner and an emulsifier for yeast-leavened 

bakery products. The glycerates and palmitates are used in cake mixes and other bakery 

liquid shortenings. The manufacture of these emulsifiers requires heat-stable lactic acid; thus 

only the synthetic or the heat-stable fermentation grades are used for this application [22]. 
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An emerging new use for lactic acid or its salts is in the disinfection and packaging of 

carcasses. Lactic acid exerts both a bactericidal and a bacteriostatic effect that results in 

extended shelf life of meat According to Snijders et al. [76], the immediate bactericidal 

effect of lactic acid decontamination on beef, veal, and pork carcasses reduced the aerobic 

plate count (APC) by 1.5 log,o per cm-. Smulders and Woolthuis [75] reported a 62 % 

increased in APC reduction at 14 d postmortem, indicating some delayed bacteriostatic 

effects of lactic acid. Hot lactic acid spray immediately after dehiding or after evisceration 

were also proved to be effective in lowering the APC, Salmonella and Listeria population on 

beef carcasses [3]. Siragusa and Dickson [72, 73] had demonstrated a better reduction in 

Listeria monocytogenes. Salmonella typhimnrium and Escherichia coli 0157:H7 by applying 

lactic acid contained in calcium alginate gel to lean-beef tissue surfaces. The addition of 

aqueous solutions of lactic acid and its salts during the processing of poultry and fish can also 

increase the shelf life and reduce the growth of anaerobic spoilage organisms such as 

Clostridium botulinum [22]. 

Applications of lactic acid in other industries 

Lactic acid and ethyl lactate have long been used in pharmaceutical and cosmetic 

applications and formulations, particularly in topical ointments, lotions, and biodegradable 

polymers for medical application (such as surgical sutures, controlled-release drugs, and 

prostheses). The calcivun salt is widely used for calcium-deficiency therapy and as an 

effective anti-caries agent. As humectants in cosmetic applications, the lactates are often 

superior to natural products and more effective than polyols. Ethyl lactate is the active 
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ingredient in many anti-acne preparations. In addition, lactic acid is also a terminating agent 

for phenol-formaldehyde resins, an alkyl resin modifier, a solder flux, a lithographic, and an 

ingredient in adhesive formulations, electroplating baths, and detergent builders [22, 82]. 

Future markets of lactic acid 

In the market lactic acid exists in the form of three different concentrations (50%, 

80% and 88% solutions) and grades (technical, food, and pharmaceutical). At present the 

prices for the 88% solution for food grade and technical grade is $I.15Ab and S1.12/lb, 

respectively [7]. The global market of lactic acid has been estimated to be growing at about 3 

- 5 % annually, and lactic acid has been called a "commodity chemical sleeping giant" due to 

its large potential market in the production of biodegradable polylactide polymers for the 

packaging industry [52]. 

There is an increased interest in degradable plastics because of enviroiunental 

concerns over plastics disposal. Unlike plastic beverage bottles, certain disposables, such as 

contaminated food packaging, diapers, hospital wastes, and feminine hygiene products, are 

not smtable for collecting and recycling. Conventional plastic materials are not easily 

degraded in the environment because of their high molecular weight and hydrophobic 

character. The polyesters fi-om lactic acid and lactide were found to be degradable by 

moisture. This allows the application of polylactide in producing plastics that do degrade in 

the environment [43], Because of the nonvolatile, nontoxic, and degradable properties, the 

use of lactate esters as 'green' solvents is also considered to be one of the future applications 

of lactic acid [22]. In addition low-molecular-weight polymers of L-lactic acid have recently 
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been, demonstrated to possess the ability of stimulating plant growth in a variety of crops and 

fruits when applied at a low level. This encourages the production of controlled release or 

degradable miilch films for large-scale agricultural applications in the future. 

According to the estimation of Battelle, SRI, Cargill (1993) announcement and 

Argomie, the U.S. volume and selling price projections for degradable plastics, 'green 

chemicals, and plant growth regulators from lactic acid could be approximately 2.5 - 3.4 

million tons per year and $3.1- 4.4 billions per year, respectively [22]. Currently, 

polymerization grade lactide monomers are supplied by CCA Biochem b.v., Holland, and 

Boehringer Ingelheim KG, Germany, at prices of $30 - 40 /lb. While lactide polymers are 

sold as specialty resins at $100 /lb by Medisorb Technologies International L.P., United 

States, CCA Biochem b.v., Holland, and Boehringer Ingelheim KG, Germany [43]. The high 

price of the lactide monomers and polymers is partly due to their batch production and 

purification costs. Hence, for the large-scale commercialization of lactic acid as a 

competitive raw material in the polymer industry, the development of advanced fermentation 

processes, and new technologies for extraction and purification are required for reducing the 

production costs of lactic acid. 

Production of lactic acid 

Lactic acid can be produced chemically from coal, petroleum, and natural gas; and 

biologically through the bioconversion of carbohydrates, agricultural and industrial wastes, 

and plant biomass [82]. The chemical synthesis route produces only racemic lactic-acid 

mixture of L(+)- and D(-)-lactic acid; whereas pure L(+)- or D(-)-lactic acid solution can be 
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obtained through microbial fermentation. The configuration of lactic acid produced by the 

bacteria depends upon the stereospecificity of the lactate dehydrogenase possessed by the 

organisms [37]. 

Chemical synthesis 

The commercial chemical method for producing lactic acid involves the conversion of 

hydrogen cyanide and acetaldehyde to lactonitrile in the presence of catalyst (Equation 1). 

The crude lactonitrile is then purified and hydrolyzed to lactic acid by using either 

concentrated hydrochloric or sulfuric acid (Equation 2). The crude lactic acid is then 

esterified with methanol to form methyl lactate (Equation 3) which is then fijrther distillate 

and pvirified into different grades and concentrations of lactic acid (Equation 4) [22, 82] 

CH3CHO + HCN ^>CH3CH0CN [1] 

2CH3CH0C:N + 2H,0 + H,S04 2 CH3CHOHCOOH + (NH4),S04 [2] 

CH3CHOHCOOH + CH3OH CH3CH0HC00CH3 + H,0 [31 

CH3CHOHCOOCH3 +H2O CH3CHOHCOOH + CH3OH [4J 

Carbohydrate fermentation 

Most lactic acid bacteria are strictly fermentative and aerotolerant. Lactic acid 

producing bacteria include species of the Lactobacillus, Sporolactobacillus, Streptococcus, 

Leuconostoc, Pediocococcus, and Bifidobacterium. They produced lactic acid through either 

the homofermentative, the heterofermentative, or the bifidum pathway. 
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The heterofermentative pathway involves the formation of carbon dioxide, lactic acid, 

and ethanol from glucose. Initially, glucose through the oxidative pentose phosphate cycle 

gives rise to ribulose-5-phosphate \diich epimerizes to xylulose-5-phosphate. Xylulose-5-

phosphate then cleaves into glyceraldehyde-3-phosphate and acetyl phosphate by the action 

of the enzyme, phosphoketolase. Finally, glyceraldehyde-3-phosphate and acetyl phosphate 

is converted to lactic acid and ethanol, respectively. The bifidum pathway involves the 

formation of lactic acid and acetic acid from the breakdown of one glucose molecule. 

Homofermentative pathway (Fig. 2) yields 2 molecules of lactate per molecule of 

glucose. Glucose is degraded via the Embden-Meyerhof-Pamas pathway to pyruvate. 

glucose 

2 ATE, 

IAD 

2 lactate 2 glyceraldehyde-3-phosphate 
2 NAD 

>-2NADH + 2H 

2 1,3-bisphosphoglycerate 2 pyruvate 

4 ADg 

Fig. 2 Formation of lactate from glucose by the homofermentative pathway. 1, enzymes of 

the glycolysis pathway; 2, lactate dehydrogenase [37]. 
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Pyruvate acts directly as H-acceptor and 2 ATPs are yielded per molecule of glucose. 

Only the homofennentative organisms are of industrial importance because of their 

greater lactic acid jdeld and lower byproducts concentration in the fermentation process [43, 

82]. Examples of homofennentative and heterofermentative organisms are listed in Table 1. 

Table 1. Homo- and heterofermentative lactic acid bacteria [37]. 

Genera and species Homofennentative Heterofermentative Lactic acid 
configuration 

Lactobacillus 

L. delbrueckii + - D(-) 

L. lactis + - D(-) 

L. bidgaricvs + - D(-) 

L. casei + - L(+) 

L. ciirvatus + - DL 

L. plantanan + - DL 

L. brevis - DL 

Lfermentum - + DL 

Streptococcus 

S. faecalis + - L(+) 

S. cremoris + - L(+) 

S. lactis + - L(+) 

Pediococcus 

P. damnosus + - DL 

Leuconostoc 

L. mesenteroides - + D(-) 

L. dextranicum - + D(-) 

Bifidobacterium 

B. bifidum - + L f + )  
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Fermentation of lactic acid 

It has been demonstrated that lactic acid fermentation is in-between the type I (growth 

associated) and type n (non-growth associated) fermentation [21]. As illustrated in Fig. 3, 

the production of lactic acid is at first directly proportional to the mediimi cell density (i.e., 

growth associated). As the medium cell density curve plateaued, the lactic acid concentration 

still continued to increase (non-growth associated). 

n 

Concentration (g/L) or 

Cell density at 620 nm 

' \ Glucose concentration (g/L) 

V 
\ / <actic acid conceDtration (g/L) 

\ 
y Cell absorbance at 620 nm 

Time (h) 

Fig. 3 Glucose consumption, lactic acid production, and cell density of L. casei. 

The non-growth associated fermentation probably is a result of the 'uncoupling' 

effects of lactic acid inside the bacteria (e.g. L. casei) cytoplasm. At high medium lactic acid 

concentration, the pH of the medium will be closed to the pKa (3.85) of lactic acid. The 

undissociated form of lactic acid can diffuse fireely through the cell membrane of the bacteria 

[6]. However, because the internal pH is higher than the external pH, acid dissociation will 

occur inside the cell (Fig. 4). As a result, the anion concentration of the cytoplasm will be 

higher than that of the surrounding external medium. This causes a net efflux of anions fi-om 
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the cell. Hence, for every molecule of acid entering the cell, one proton is internalized [9]. 

Thus, there is a need to produce energy (ATP) via the homofermentative pathway for 

maintaining the internal pH by pumping out protons as the lactic acid concentration inside 

and outside the cell increased [37,41,67]. 

Ont -ApH- In 

XCOOH 

K 
XCOO-

XCOOH 

• xcoo* 

ATP 

ADP + P. 

Fig. 4 Schematic representation of uncouplers action of organic acid and the dissipation of 

protonmotive force [67]. 

Batch fermentation is generally employed in industrial-scale lactic acid production 

[43, 82]. Continuous process with cell recycling [54,39] and cell immobilization system [47, 

77] have also been proposed; however, uncertainties in scaling up keep them from being used 

without further testing. Cell immobilization is one of the current method commonly used to 

increase the cell concentration in the bioreactor and to lactic acid production. 
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Immobilization 

Immobilization of biocatalyst (e.g. microorganisms) into or onto a solid support 

material is a common method in reducing bioreactors ceU washout, increasing the biocatalyst 

concentration, and optimizing biocatalyst contact with the substrate. C. D. Scott [68] 

defined irmncbilization of microorganisms as any technique that limits the firee migration of 

cells and classified immobilization into two main types: 1) entrapment, where the organisms 

are caught in the interstices of fibrous or porous materials or are physically restrained within 

or by a solid or porous matrix such as a stabilized gel or a membrane; and 2) attachment, 

where the microorganisms adhere to surface or other organisms by self-adhesion or chemical 

bonding. 

Entrapment of cells 

Encapsulation or physical entrapment of organisms inside a polymeric matrix, is one 

of the most widely used techniques for cellular immobilization. Suspended cells are added to 

an aqueous solution of hydrocolloidal gels such as alginate or carrageenan to form biocatalyst 

beads. The resulted sxispension is then forced through a nozzle, an orifice, or by dispersing it 

into a noninteracting liquid medium to form droplets. The droplets are subsequently 

stabilized into biocatalyst beads with entrapped organisms by polymerization or other types 

of cross-linking. Alginate droplets can be stabilized with divalent ions such as Ca-*, and 

carrageenan droplets are generally crosslinked with K'. Both of these materials interact 

reversibly with the cation and tend to disintegrate when it is removed [74], 
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Encapsulation and lactic acid fermentation 

Different fermentor configurations, such as stirred tank, packed bed, and fluidized bed 

reactors, have been tested for encapsulation of cells. In a continuous fermentation, Steiu"oos 

et al. [77], immobilized L. delbrueckii in calcium alginate, which produced 12 g/L lactic acid 

at a rate of 0.2 g/L/h. Tuli et al. [79], immobilized L casei in polyacrylamide gels and 

obtained a maximum lactic acid concentration of 31 g/L with a 0.64 g/L/h production rate. 

Because of the displacement of calcium ions in the alginate beads by the lactate ions, 

shrinkage and decreased strength of calcium alginate beads are often observed and reported 

during lactic acid fermentation [29,66]. The difficulty in stirred tank reactors is the breakage 

of alginate beads during stirring. The major draw backs of packed bed column configuration 

are difficult pH control, plugging of column by leaked cells, and decalcification of calcium 

alginate beads. The fluidized bed reactor also faced the alginate beads cell-leakage problem 

[66]. In addition, mass transfer limitation is another important factor that inhibited the 

application of encapsulated cells in polymer beads and granules for lactic acid production 

[65]. 

Cells can be restrained by semipermeable membrane materials (hollow-fiber 

bioreactor) that isolate the organisms fi-om the bulk liquid. Growth must be controlled to 

prevent an excessive build-up of biomass since it could cause pressure that would rupture the 

membrane. Membrane systems that involve electrodialysis fermentations center around a 

cell-recycling system are not commercialized due to their chronic membrane fouling 

problems high costs [68]. 



www.manaraa.com

16 

Porous materials (cotton mats, nylon mesh, cloth, metallic mesh, foam and sponge 

etc.) have voids that allow organisms to penetrate and grow into large colonies. Silva and 

Yang (1995) [71] adopted a fibrous-bed bioreactor for continuous production of lactic acid 

fi:om unsupplemented acid whey. The fibrous bed was essentially stainless steel screen 

topped with cotton terry cloth and spiral-rolled to form a tubular bioreactor packing. 

Productivity of the fibrous-bed bioreactor was foimd to be 10-times higher than that of the 

batch fermentor with firee cells. However, product inhibition and diffusion limitation still 

have to be overcome for improving cell efBciency and reactor productivity. 

Attachment and biqfUms 

Biofilms are formed when microorganisms first attach to a submerged surface in an 

aqxiatic environment and then grow, multiply, and produce extracellular polymers while 

being attached. In flowing systems where nutrients are continually replenished, adsorption to 

substratum surfaces would enable bacteria to have a better chance of obtaining nutrients for 

growth [85]. This is now generally accepted as the main reason for microbial attachment. 

A biofilm system generally consists of the attached micbrobial layer, the overlying 

gas and/or liquid layer, and the substratum to which the biofilm adheres. It can be divided 

into five compartments; the substratum, the base film, the surface fitoi, the bulk liquid, and 

the gas [17]. The accumulation of the biofihn follows a fixed pattern which is arbitrarily 

divided into three consecutive phases: lag phase, biofilm production phase, and steady-state 

phase [36] (Fig. 5). All events in biofilm formation contribute to three sequential activities: 

a) colonization, b) maturation, and c) detachment or sloughing [57]. 
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Fig. 5 The three phases of biofihn accumulation. The inset describes the initial 

accumulation of the conditioning film, which is negligible in terms of thickness or 

mass deposition [17]. 

Colonization 

In natural environments like fresh water streams, ditches or inner surface of pipelines, 

the formation process starts when organic molecules accumulate at the substratum, producing 

a conditioned substratum. Dispersed microbial cells, mostly heterotrophic bacteria, in the 

bulk water are transported to the conditioned substratum (Fig. 6). 

In a quiescent environment, the predominant mechanism for bacterial transport may 

be sedimentation or motility of the organism. In laminar flow, the primary transport 

mechanism may be diffusion (Brownian motion), whereas in turbulent flow convective 

mechanisms related to fluid motion dominate [16]. 
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Fig. 6 Transport and adsorption of organic molecules on a clean substratum, forming a 

conditioning film [17]. 

Initially, bacteria experience electrostatic attraction or repulsion to or from the 

conditioned substratum. Then a fraction of the cells that reach the substratum adsorb to the 

surface via extracellular polymers and surface appendages such as pili, fimbriae, flagella, and 

prosthecae [18]. Since the attractive interactions between the substratum and the bacteriimi 

at this stage are relatively few and weak, detachment of bacteria can be easily brought about 

by fluid shear forces and electrical repulsion present among the surfaces around the bacteria. 

Adhesion is therefore reversible [55]. 
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Subsequently a fraction of the reversibly adsorbed cells remains immobilized and 

becomes irreversibly adsorbed. This irreversible adsorption is mostly due to multiple weak 

poljoner-surface bonds that are formed between the substratum and the extracellvdar 

polymers secreted by each cell [20,63] (Fig. 7). 

ADVECTIVE REVERSIBLE DESORPTTON IRREVERSIBLE 
TRANSPORT ADSORPTION DESORPTION ADSORPTION 

-H 

Fig. 7 Transport of microbial cells to the conditioned substratum, and adsorption, 

desorption, and irreversible adsorption of cells at the substratum [17]. 

Maturation 

The irreversibly adsorbed cells grow at the expense of substrate and nutrients in the 

bulk water, increasing biofilm cell numbers and forming other metabolic products. 

Filamentous microorganisms, like fungi and. Actinomycetes, and prosthecae bacteria develop 

within one or two weeks of active growth into the primary population of the biofilm. 

Exopolymers are then secreted by the bacteria. The majority of the layer probably 

consists of polysaccharides with oligosaccharide repeating units [19,46]. Ceming et al. [15] 

showed that Lactococcus lactis ssp. lactis, Lactococcus lactis ssp. cremoris, and 

Lactobacillus casei ssp. casei produced exopolymer layers containing primarily galactose 
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and glucose with a trace amounts of mannose, rhanmose and pentoses. While Kojic et al. 

[43] found that Lactobacillus casei CGI 1 produced exopolysaccharides containing 75% 

glucose and 15% rhanmose and a trace amoimt of arabinose, mamiose, and galactose. 

Chemical forces like dispersion forces, electrostatic interactions and dipole moments 

of the exopolymer layer accumulate and glue the bacteria together. The biofilm now takes on 

the macroscopic appearance of a gel. The polysaccharides molecules of the exopolymer 

layer are quite stiff and extended. Sometimes the exopolymer layer may be present in a 

variety of forms. Leppard and Bakke demonstrated the presence of 5 nm electron-opaque 

fibrils in biofilms of Psuedomonas aeruginosa [18]. 

The exopolymer layer slows down the diffiisional transport of dissolved molecules 

(nutrients and products) to and away from the biofilm surface. Hence, the formed gel, 

together with the myceUa of the fungi and/or Actinomycetes, act as a penetration barrier to 

toxic substances and a trap for debris and nutrients, and other organic materials from the bulk 

phase [20]. 

Because of the limitation of transfer through the gel, the inner layers of the biofilm 

may become deficient in oxygen. This new environment stimulates the development of an 

anaerobic microbial population in the reduced zone. In the final phase of biofilm 

development, protozoa may attach to the film. Large populations of ciliate or flagellate 

protozoa are foxmd in many natural mature biofilms. They feed on the bacterial population 

and appear to be important participants in maintaining the microbial community in a stable 

condition. 



www.manaraa.com

21 

Detachment 

Detachment can be categorized into two processes, shearing and sloughing. Shearing 

occurs when microbial cells on the surface of the biofilm are being tom away by the shear 

stress of the flowing fluid. This process may occur at the beginning or any other stages of the 

biofilm formation. Very often the cells detached by shearing can collide and reattach to the 

biofilm surface. This enables an exchange of the different kinds of microorganisms along the 

inner surface of the biofilm. The redistribxition of microorganisms is very important in 

keeping a stable ecological condition in the biofilm. 

Eventually the biofilm may experience a destructive release called sloughing, in 

which extensive portions of the biofilm are removed, leading to a nearly bare substratum. 

Such an event might be caused by excessive exopolymer or gas production in the anaerobic 

zone. Sloughing could result in pressure gradients and subsequent detachment of the film 

[16]. Following this kind of event, only a relatively thin exopolymer may remain on the 

substratum. 

Economic importance ofbiofilms 

Biofilm formation in medicine is detrimental. The adherence of bacteria to the tooth 

surface forms a permeable layer within which acidic fermentation products of the bacteria 

accumulate and demineralize the enamel layer of the tooth [42]. This leads to the potential 

development of dental caries, malodor and peridontal disease. Biofilm formation on 

pacemakers and implants may result in serious infestation or fatal consequences. Survival of 

the biofihns is probably due to the body's immime system failing to recognize and kill the 

bacteria once the cells are transformed into biofilms [44]. 
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In industry, biofilm formation is the major cause of microbial fouling and material 

deterioration in pipelines, tubings and ship hulls [16]. High costs are incurred in developing 

and buying antimicrobial agents that are able to suppress biofilm formation effectively and in 

the removal of biofilm s. 

As an alternative to suspended cell culture in a fermentor, immobilization of cells has 

been used in conventional fermentation. Biofilm formation is a natural way of immobilizing 

microorganisms to an inert support. Reactors with biofilms have been used industrially 

mainly in wastewater treatment plants and the 'quick vinegar" production process. 

In a wastewater treatment plant, the collected wastewater passes through a settling 

tank- where debris and large particles are removed and is then transferred to one or more 

bioreactors for the removal of organic matter, nitrogenous wastes and heavy metals. 

Wastewater treatment bioreactors can be divided into two main types: attached biomass 

reactors and nonattached biomass reactors. The first type of reactors mainly involves biofilm 

formation in a fixed (packed) bed reactor whereas the second type of reactors comprises the 

applications of activated sludge, contact process and sludge blanket systems [14, 58]. 

Conventionally, stones have been used as substratum for the biofilm in the packed bed 

reactor. Presently plastic media which have the advantage of lightness, higher specific 

exchange surface area, and higher interstitial spaces are used instead [2], 

A trickling filter is used in quick vinegar production [21]. This is a recycled batch-

fermentation process which takes about 4 -5 days for completion. The packed bed reactor is 

in the form of a wooden reactor filled with beechwood shavings. The starting material 

(ethanol brew as a result of the yeast ermentation of sugar) is sprayed over the surface of the 
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beechwood shavings which are coated with an acetic- acid bacteria biofikn (Acetobacter 

and/or Gluconobacter). After trickling through the shavings, the partially converted solution 

is cooled and recirculated over the beechwood chips. Generally about 88 - 90% of the added 

alcohol is converted to acetic acid through this trickling generator process [21]. The 

thickness of the biofilm is controlled by low growth rates and high substrate conversion. 

Although this is a batch process, the biofilm formed on the beechwood chips is retained for 

further batch processing. 

In the 1970's, metal leaching and animal tissue culture were developed as additional 

industrial fermentations using biofilms. The ability of bacteria and its exopolymer to bind 

heavy metal ions has been documented by Lion et al. [51]. This property leads to the 

application of biofilms in the cycling of trace metals in nature, metal leaching [21], 

detoxification of industrial wastes containing heavy metals [50], formation of polysaccharide 

gels or aggregates by inorganic cations [12], treatment of water polluted by hydrocarbons [4], 

culturing of viruses [5], and the production of the mammalian cell (e.g. hepatocytes, bone 

marrow cells, lymphocytes; or cell-derived products) [10,78]. 

Biomass support particle systems 

In fixed biofilms wastewater treatment systems, unpredictable sloughing of the 

biofilm generally occurs when the microbial fihn is allowed to become too thick. 

Microorganisms nearest the substratum are depleted of nutrients and oxygen. This starvation 

together with the accumulation of unwanted or even toxic products causes sloughing and in 

some cases the collapse of the whole film. To overcome the above problem, small particles 



www.manaraa.com

24 

called biofilm support particles (BSP) on which biofilms could form can be used in a stirred 

tank or fluidized bed fermentor to give a system called the completely mixed biofibn 

fermentor [5]. The small, inegular size and varied geometrical shape of the BSP provides a 

large surface area for microbial film development This increases the reactor biomass 

concentration which in turn raises the overall substrate conversion rates. 

In a BSP system, microorganisms remain in the particle by adsorption to the surfaces 

and aggregation to each other, forming a biofilm matrix throughout the support particle. 

Abrasion results from physical contact among the moving particles which causes removal of 

excess surface growth and allows a relatively constant film thickness to be maintained. 

Upward flow of water or a water and gas mixture in the fermentor generates upward forces 

that are large enough to overcome the falling motion of the BSP. This results in an uniform 

pattem of particle movement thus allowing thorough mixing within the bioreactor. 

BSP types, shapes, and applications 

BSP for wastewater treatment can be constructed from a variety of materials such as 

rocks, gravels, sands, wooden chips, ceramic, poly(ester) foams, plastic materials (high 

density polypropylene, polyvinyl chloride, or high density polyethylene), stainless steel wire, 

fritted glass particles in a range of sizes and shapes (spheres, mats, cubes, donut-shape, and 

porous pads) [12]. Recently, Massol-Deya et al. [56] employed granular activated-carbon as 

BSP for treating petroleum-contaminated groimdwaters. Cell-free channel structures for 

facilitating transport among deep inner layers to the svirface of biofilms were observed. 
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Black et al. [8], used stainless steel BSP and three plastic foam types of BSP of 

varying porosity to study ethanol production by Saccharomyces cerevisiae and 

Saccharomyces icvanm in a fluidized bed reactor and in a continuous flow reactor system. In 

all cases, yields of ethanol were better than in freely suspended cultures. Webb et al. [84], 

employed a system similar to that of CMMFF with the filamentous fungus Trichoderma 

viride QM 9123 and stainless steel BSP. This system showed a three-fold higher cellulase 

production than that obtained using freely suspended cells. 

Kxmduru and Pometto III [48, 49] used polypopylene-composite chips containing 

25% (w/w) agricultural materials (ground soybean hulls with zein or soybean flour) as BSP 

for continuous ethanol fermentation. Biofilm reactors out-performed suspension-culture 

reactors, with 15 to 100-fold higher productivities and with higher percentage yields for S. 

cerevisiae and Z mobilis. 

BSP for lactic acid production 

Lactic acid production using biofilm on inert supports have been extensively studied 

for their potential to improve the cell concentration, productivity, and the lactic concentration 

of the reactor. Goncalves et al. [35] made inert supports mainly from glass (Raschig rings of 

sintered glass, beads of sintered glass, and beads of porous glass) and compared 

Lactobacillus delbrueckii NRRL B445 attachment ability with irregular ceramic particles. 

Beads of sintered glass was fovind to be the best support, yielding the highest volumetric 

lactic acid productivity (2.5 g/L/h). 
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Guoqiang et al. [38] adsorbed Lactobacillus casei (DSM 20021) on foam glass 

particles pretreated with polyethyleneimine. In the stir-tank system, glucose was almost 

completely utilized (99.2%) with a lactic acid productivity of 5.2 g/L/h at a dilution rate of 

0.18 /h. In the 14-days packed-bed experiment at 0.11 /h dilution rate, lactic acid yield and 

productivity was about 90% and 1.17 g/L/h, respectively. The use of these glass supports is 

hindered by their britdeness and sensitivity to attrition under stirred conditions. 

Demirci et al. [24] had used pea gravels, aluminum oxide-ceramic spheres, and 

polypopylene-composite chips containing 25% (w/w) agricxiltural materials as BSP for lactic 

acid batch fermentation. Polypopylene-composite chips were shown to have the best biofilms 

formed among the three types of BSP. 

Further application of polypropylene-composite chips containing 25% (w/w) 

agricultural materials for lactic acid fermentation had been studied. In short-term (7-days) 

studies, pure- and mixed-culture continuous fermentations produced 30 g/L/h and 35 g/L/h 

lactic acid, respectively [25]. In the long-term repeated-batch lactic acid fermentation, other 

than a higher lactic acid concentration (25% higher), the percentage yields, maximum 

productivity, glucose consumption rates, and growth rates of the polypropylene-composite 

chips bioreactor were similar to that of the polypropylene-alone supports bioreactor [26]. 

The main reason for the above results was due to supports clumping, which caused serious 

medium chaimeling and greatly reduced substrate-to-cell contact. Further smdies for new 

shape and properties of BSP are required for overcoming the above problems. 
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Evaluation of bacterial attachment 

Physical chemistry research of interfaces provides two theories for describing the 

adsorption of a particle to a surface. The first theory is the Deqaguin-Landau and Verwey-

Overbeek (DLVO) theory of colloidal chemistry since a bacterial suspension may be 

described as a living colloidal system (liquid system containing large molecules or small 

particles) [59]. This theory describes the change in Gibbs energy as a fimction of the distance 

between two bodies. If steric efifects are negligible, the total interaction Gibbs energy is 

obtained from the addition of the Van der Waals and the electrostatic interaction between the 

bacteria and its environment. The Van der Waals interaction is usually attractive, whereas 

the electrostatic interaction is usually repulsive, because in nature both bacteria and surfaces 

are predominantly negatively charged [81]. Attraction of bacteria to negatively charged 

interfaces depends upon interacting electrical double-layer-repulsion and Van der Waals 

attraction energies, the resultant energy being dependent upon the electrolyte valency and 

concentration in the liquid. Therefore, variations in the degree of adsorption have to be 

affected by the differences in the electrokinetic potentials of both the cells and the adsorbent 

particles [23]. The surface charge density of bacteria can be calculated from its zeta (0 -

potential. C-Potential is generally measured by microelectrophoretic methods [30] using the 

equation of Smoluchowski: 

C = Uti /e [5] 

where U is the electrophoretic mobility, t| is the viscosity, and e is the pennissivity. The 

electrophoretic mobility of a particle depends upon the ratio of the conductivity of the 

particle to that of its environment. Hence, a modified Smoluchowski equation is used to 
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detennine the C- potential of bacteria: 

C  =  U T i ( l + 0 2 / 2 0 , ) / e  [ 6 ]  

where o, and are the conductivities of the particle and suspending medium, respectively 

[30]. Microelectrophoresis apparatus and techniques generally have the problems of failure 

to conform to the theorectical requirements, inadequate temperature control, and difficult to 

construct and manipulate. Gittens and James [34] modified the microelectrophoresis 

apparatus and incorporated a rectangular observation chamber, conforming to the theorectical 

requirements in which temperature can be accurately controlled. 

The second theory describe bacterial adhesion as a result of thermodynamical values 

involving surface tensions among the interfaces, bacteria, suspended liquid, and solid 

substratum [45]. Surface tension is an indication of the forces of attraction that hold the 

molecules together in the liquid (or solid) state. Thus, liquid droplets tend to become spheres 

(the form of least surface area) because of the mutual cohesion of the molecules. Conversely, 

work must be expended to increase the surface area of a liquid, as in expanding a soap 

bubble. Hence surface tension can be regarded as a force (N/m) acting along the surface or as 

surface fi-ee energy (J/m^), the two concepts being entirely equivalent. Whereas, older 

surface tension data will be given in the c.g.s. units of dyne/cm or erg/cm' [69]. According to 

Gibbs free energy of adhesion per interface unit area, 

^adh ~ YSB - YSL " YBL [^I 

where AFj<jh is the interfacial free energy of adhesion, Ysb is the solid bacterium interfacial 

free energy, Ysl is the solid-liquid interfacial free energy, and Ybl is the bacterium-liquid 

interfacial free energy. 
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When electrical charge interactions are negligible, adhesion may be expected if: 

AF,^<0 [8] 

whereas if: 

> 0 /py 

adhesion is energetically unfavorable [1]. The solid as well as the liquid parameters that 

appear in equation [7] can be measured by employing contact angle measurements using the 

equation of Young 

Ysv - YSL = YLV cos 0 [lOJ 

where 0 is the contact angle and the indices LV and SV mean liquid vapor and support vapor, 

respectively [61]. The Gibbs free energy of adhesion can be calculated by measurement of 

the contact angles for cell and support, and tables of converting the contact angles to surface 

free energy is published by Neumann et al. [60]. 

Interactions of the bacteria with the liqviid droplets and problems connected with the 

drjdng of the bacterial layer have difficulty in the determination of surface free energies of 

bacterial surfaces by contact angle measurements. Busscher et al. [13] overcame these 

problems by placing the cellulose triacetate filter (pore diameter, 0.45 um; Gehnan GA-6) 

with the bacteria lawn in a petri-dish containing a layer of l%(wt/vol) agar containing 10% 

(vol/vol) glycerol until the filters were mounted onto a holder. The water contact angles, 

measured 2 s after the droplets were applied, are presented as a flmction of the drying time of 

the bacterial deposits. The contact angles were calculated from the measured parameters 

height Qi) and length (/) of the image of the drop by the equation: 

tan0=2M [11] 
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The value of 0 considered as characteristic of the cells is deduced from the horizontal part of 

the respective curves. Bacteria can be separated roughly into three categories, hydrophobic 

(0 > 90°), moderately hydrophobic (0 = 50° to 60°), and hydrophilic (0 <40°) [59]. 

Other than free surface energy (contact angle), hydrophobicity and cell surface 

charges of bacteria have also been used to predict bacterial attachment on solid surfaces. 

Relative hydrophobicity of bacterial cells has been characterized by bacterial adherence to 

hydrocarbons (BATH) [64]. However, considerable variation in values has been reported 

depending on the method of determination. Hydrophobic interaction chromatography (HEC) 

[59, 80] has also been employed in measuring the hydrophobicity of bacteria. Concerns 

about the filtration effect or nonspecific binding of the bacteria by the column gel have 

hindered its wide application. Electrostatic interaction chromatography (ESIC) has been used 

to measure the cell surface charge of bacterial cells [62]. The efficiency of the ESIC method 

is limited by the total surface area of the resin particles, and hydrophobic property of those 

bacteria with high charges are generally not detected by this method. 

Studies by Absolom et al. [1] with five bacterial species had proved that the surface 

tension values obtained from bacterial adhesion are in good agreement with the values 

obtained from direct contact angle measurement on layers of bacteria. Dickson and 

Koohmaraie [28] in their study of bacterial attachment on meat surfaces also obtained a high 

correlation ( r* = 0.8) for contact angle method and xylene BATH, and for contact angle 

method and HIC. Hence, contact angles are generally regarded as a good measurement of 

bacterial hydrophobicity and have a predictive value for adhesion. 
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Demirci et al. [24] estimated the degree of biofilm formation on lactic acid BSP by 

evaluating the extent of clumping of solid supports, weight gain and Gram stains of the 

supports. Siebel and Characklis [70], Wanda et al. [83], and Bryers and Banks [11] 

determined biofilm thickness microscopically and analyzed biofilm population indirectly by 

product, glucose, and dissolved oxygen concentration. Dickson and Koohmaraie [28], and 

J.S. Dickson [27] measured the population of loosely attached bacteria on meat surfaces by 

rinsing the BSP in phosphate buffer. They also obtained the relative physically attached 

bacterial population by enimierating the homogenized solution of the BSP. Fletcher and 

Loeb [32], Bryers and Banks [11] fixed the BSP with attached bacteria with Bouin fixative, 

stained them with ammonium oxalate crystal violet or acridine orange, and then coimted the 

attached bacteria by bright-field or fluorescence microscopy. In experiments for evaluating 

BSP, it is generally recorrmiended to include at least a method for estimating the tendency of 

bacterial attachment to the supports (e.g. contact angle method) and a method for 

enumerating the actual bacteria population on the supports. 
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USED IN L(+)-LACnC ACID BIOFILM FERMENTATION BY 
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James S. Dickson, and All Demirci. 

Abstract 

Incorporation of oat hulls, soybean hulls, yeast extract, soybean flour, dried red blood 

cells, bovine albumen, and/or salts into plastic-composite supports was evaluated by two 

replications of a 2^' design. Plastic-composite supports containing 50% agricultural products 

and 50% polypropylene (w/w) were produced by twin-screw high-temperature extrusion. 

Lactobacillus casei subsp. rhamnosus (ATCC 11443) was incubated for 48 h at 37°C with 

uncontrolled pH in 50 bottles each with 5 g of discs and 20-mL minimal medium (2% 

glucose and mineral salts solution). Culture-fermentation medium lactic-acid concentration 

and cell density were analyzed by high-perforaiance liquid chromatography (HPLC) and 

spectrophotometry, respectively. Stripping sand, scanning electron microscopy, and svirface 

contact-angle method were used to study the plastic composite-supports biofilm population 

and relative hydrophobicity. Biofilm population was affected by the contact angle and 

relative hydrophobicity of supports (r = 0.79 to 0.82). Lactic acid production was by the 
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suspended cells (r = 0.96) and the biofilm on the PCS disc (r = 0.85). Soybean hulls, yeast 

extract and salts gave less hydrophobic supports (P < 0.0001) and better cells attachment (P < 

0.03). Yeast extract enhanced the growth of free and attached cells in minimal medium (P < 

0.0001). Bovine albumen blended with soybean hulls, yeast extract, soybean flour, and salts 

had the highest lactic acid concentration in the first (7.6 g/L) and twentieth (1.4 g/L) 

simulated repeated-batch fennentation. Under all conditions, suspended cells and 

polypropylene discs control gave negligible lactic-acid production and cell density. Plastic-

composite supports consistently outperformed the two controls in minimal-medium lactic-

acid biofilm-fermentation. 

Introduction 

Lactic acid is an organic hydroxy acid that exists in two optically active, L(+) and D(-

), enantiomers [16]. It is widely used by the food industry (acidulent, preservative, stearoyl-

2-lactylate synthesis) and nonfood industry (polylactic acid, green solvent, slow release 

carrier) [5,12]. Polylactic-acid degradable plastic is a polyester of lactic acid with a projected 

market of 300 million bushels of com per year [5]. 

Lactic acid can be produced chemically from acetaldehyde and hydrogen cyanide or 

via microbial fermentation, but only microbial sources can produce exclusively the L- or D-

isomers of lactic acid. Presently, lactic acid is produced by batch fermentation because it 

exhibits both Type I (growth associates) and Type II (nongrowth associates) fermentation [3]. 

Lactic-acid production rates and concentration can be increased by strain development to 

form high-production mutants [7] or by increasing cell density in the fermentor [8,9]. Cell 
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immobilization is a common way to increase cell density, although industrial application of 

cell immobilization with calcium alginate beads and polyacrylamide gels are few. This is 

mainly due to the high cost of immobilization, mass-transfer limitations, lack of stability of 

the biocatalysts, and changes in product pattern of reactions catalyzed by certain immobilized 

cells [12]. 

Biofilms are a natural form of cell immobilization that results from microbial 

attachment to solid supports in submerged environment [1]. This increases the cell density 

and enables the biofilm population to withstand stresses such as pH change and starvation. 

Attachment of cells on supports to form biofilm depends largely on the formation of 

extracellular polysaccharides and surface charge between the solid surface and the 

microorganisms [2]. Studies by Van Loosdrecht et al. [15] demonstrated that measurement 

of hydrophobicity of cell surfaces by contact-angle method gave more consistent results than 

methods such as the hexadecane test and partitioning of cells in the two-phase polyethylene 

glycol and dextran system. 

Previous studies in our laboratory had successfully proved that biofilm fermentation 

with plastic-composite supports (PCS) chips containing 75% polypropylene (PP) and 25% 

agricultural material (w/w) benefitted lactic acid production. In pure- and mixed-culture 

continuous fermentation, 30 and 35 g/L/h productivity was achieved, respectively [8]. In 

addition, the PCS chips were shown to be effective in long-term (more than 2 months) 

repeated-batch lactic acid biofilm fermentation with both pure and mixed cultures [9]. 

However, medium channelling and clumping of cells among the PCS chips interfered with 

medium mixing, pH control, and ultimately, lactic acid production. To overcome these 
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problems, new PCS with a disc shape were used for this study. We demonstrated that lactic 

acid production was shown to have high correlation with the suspended cell density, biofilm 

population, and hydrophobicity of the new PCS discs. 

Materials and methods 

Plastic-composite supports 

Plastic composite-supports (PCS) discs that contained 50% polypropylene [PP] 

(Quantum USI Division, Cincinnati, OH) and 50% agricultural materials (w/w) were 

produced by high-temperature extrusion in a Brabender PL2000 with twin-screw co-rotating 

extruder (Model CTSE-V, C.W. Brabender Instruments, Inc., South Hackensack, NJ). 

Incorporation of ground (20 mesh) oat hulls (OH) (Ralston Foods, Cedar Rapids, lA), ground 

(20 mesh) vacuum-dried (48 h at 110°C and 30 in Hg) soybean hulls (SH) (Cargill Soy 

Processing Plant, Iowa Falls, lA), defatted soybean flour (SF) (Archer Daniels Midland, 

Decature, IL), yeast extract (YE) (Ardamine Z, Champlain Industries Inc., Clifton, NJ), dried 

bovine albimiin (BA) (American Protein Corp., Ames, LA), dried bovine red blood cells 

(RBC) (American Protein Corp., Ames, lA), and mineral salts (S) (0.2% sodium acetate, 

0.12% MgS04*7H20 and 0.006% MnS04-7H20) into PCS discs was evaluated. 

Materials to be extruded were first mixed in a separate container on a weight base 

before being poured into the extruder hopper. The mixture was extruded (11 and 15 rpm for 

soybean-hulls and oat-hulls composite supports, respectively) as a continuous tube through a 

medium pipe die (3.2 mm ID and 12.7 mm OD) with barrel temperatures of 200, 220, and 

200°C and a die temperature of 167°C. The barrel exhaust vent was plugged because the 
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release of moisture at the die was essential for producing a porus support. Composite tubing 

was extruded onto a steel rod and air cooled slowly without fanning. Tubes with 10 to 11 

mm OD were then cut into discs. Composition, physical properties, and treatments applied 

for each PCS are listed in Table 1. Polypropylene discs were bored out of a polypropylene 

sheet (3.5 mm thick) with cork borers 7 mm ID and 11 mm OD. 

Hydrophobicity of L. casei and PCS discs 

The relative hydrophobicity of each PCS-discs blend was determined by measuring 

the contact angles with the sessile drop technique as described by J.F. James (Program Abstr. 

5th Int. Pathog. Neisseria Conf, abstr. no. VI19,1986) [10]. A drop of deionized water (20 

}xL) was deposited on the cut surface of the disc (Fig. 1). The surface and the drop was 

photographed within 1 s of application. The photographic slides were developed, and the 

contact angle (0) of each water droplet on the discs cut siirface was measured. 

The relative hydrophobicity of L. casei was determined by measuring the contact 

angles of deionized water droplets deposited on a cell lawn within 1 s of application (Fig. 1) 

[6]. The cell lawn was prepared by filtering 300 ml of L. casei culture (18 h in 8% Glu LAF 

mediimi [8]) with a 0.45-nm cellulose triacetate filter (Millipore HAWP, Millipore 

Corporation, Bedford, MA). The moisture content of different cells lawns were standardized 

by placing the filters with cells in a petri dish containing glycerol-agar (1% [w/v] in water 

containing 10% [v/v] glycerol) for 3 h [14]. 
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Bacterial culture preparation 

Lactobacillus casei subsp. rhamnosus (ATCC 11443) is a homofennenter of L(+)-

lactic acid. Stock cultures were maintained in Lactobacillus MRS broth (Difco Laboratories, 

Detroit, MI) at 4°C with monthly transfers to fresh medium. Ten milliliters of an active L. 

casei cxilture (18 h in MRS broth at 37''C) was inoculated into 100 ml of lactic-acid 

fermentation (LAF) medium [2% glucose (Glu), 0.4% yeast extract (YE) (Ardamine Z, 

Champlain Industries Inc., Clifton, NJ), and salt solution (0.05% KH2PO4,0.05% K2HPO4, 

0.1% sodium acetate, 0.06% MgS04-7H20, and 0.003% MnS04-7H20)] [8], which was then 

incubated for 18 h at 37°C. Centrifiigation (16300 x^, 20 min) followed by a rinsing step 

with 100 ml of minimal medium (MM) (2% Glu, 0% YE, and salt solution) were used to 

remove LAF medium from the active cells. The rinsed active cells were then resuspended 

into 100 ml of sterilized MM and used in the simulated repeated-batch fermentation assay. 

Batch fermentation (BF) studies 

Batch fermentation without pH control was used to characterize each PCS blend 

performance. Suspended cells and PP discs were used as controls. PCS or PP discs (5 g) 

were sterilized dry (45 min at 121°C) in a 50-ml screw-cap cultured tube. The sterilized discs 

were aseptically transferred into a dilution bottle containing 20 ml of sterilized MM and 

soaked at 37°C in duplicates for 24 h. This process was used to wet each plastic disc and to 

remove all the rapidly leachable materials. The initial soaking solution was decanted 

aseptically, and each dilution bottle was refilled with 20 ml of sterilized MM. Then, each 

dilution bottle was inoculated with 0.2-ml active L. casei culture (18-h culture) and incubated 

in a 37°C water bath for 48 h. 
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The BF medium was aseptically decanted and evaluated for lactic acid produced, 

glucose consumed, and suspended cell density (620 nm). L(+)-Lactic acid and D-glucose 

concentrations were analyzed by a Waters high-performance liquid chromatograph (HPLC) 

(Milford, MA) equipped with Waters model 401 refractive index detector and a Bio-Rad 

Aminex HPX-87H column (300 x 7.8 mm) (Bio-Rad Chemical Division, Richmond, CA) 

using 0.012 N H2SO4 as the mobile phase. Bacterial growth in LAF medium was followed 

by measuring the absorbance at 620 nm with a Spectronic 20 spectrophotometer (Milton Roy 

Co., Rochester, NY). 

Viable biofilm population on the supports 

A modified method of Dickson et al. [10] was used to enumerate the relative biofilm 

population on the PCS. After the first simulated RBF in MM, five discs (both PCS and PP) 

were aseptically removed from each RBF bottle and transferred into a dilution bottle 

containing 100 ml sterile 0.1% peptone water. Each bottle was vigorously shaken to remove 

nonbiofilm cells. The rinsed supports were then aseptically transferred into a screw-cap 

culture tube with 9 ml sterile 0.1% peptone water and 5 g of sterile sand. The culture tube 

was subsequently vortexed vigorously at 30-s intervals for a total of 1.5 min. The culture 

tube medium was then serially diluted into sterile 0.1% peptone (10^ to 10^). Colony-

forming units (cfu) were determined for each tube by using Lactobacillus MRS agar spread 

plates in dupUcate. Finally, the five sand-stripped discs from each BF bottle were rinsed 

(water), convection-oven-dried (70°C, 24 h), and weighed. 
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Scanning Electron Microscope 

Two supports were retrieved aseptically from the dilution bottle and immediately 

fixed with 4% glutaraldehyde in 0.05 M cacodylate buffer (pH 7.2) overnight at 4°C. Fixed 

samples were washed three times in the same buffer at room temperature and postfixed in 1% 

osmium tetroxide with shaking for 1 h at 4°C. Postfixed samples were again washed three 

times in the same buffer and then dehydrated through an ethanol graded series (50, 70, 75, 

80, 85,90,95, 100, 100, and 100%). The dehydrated samples were then critical-point-dried 

by a hexamethyldisilazine (HMDS) solution series [30-min intervals of 1:1 (v/v) 

HMDS/100% ethanol, 100% HMDS, 100% HMDS, and 100% HMDS] at room temperature 

with shaking. Samples were allowed to dry overnight inside a solvent hood in a crack-lid 

petri dish containing HMDS-saturated filter paper at room temperature. SEM micrographs of 

gold-coated critical-point-dried supports were taken with a JEOL JSM-35 scanning electron 

microscope at 25 kV(JEOL, Japan). 

Statistical analysis 

Two replications of a 2^' design [4] were used to evaluate the effect of SH, OH, YE, 

SF, RBC, BA, and S on the characteristics of PCS in all the tests performed. The five factors 

evaluated in the first replication were hulls (OH or SH), YE, SF, RBC, and S. The five 

factors studied in the second replication were hulls (OH or SH), YE, SF, BA, and S. In each 

replication 16 treatments in duplicate were examined. The data from each test were analyzed 

by Least Significant Difference (LSD) and Analysis of Variance (ANOVA) using Statistical 

Analysis System Package (version 6.03) (SAG Institute, Inc., 1985). 
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Results 

Relative hydrophobicity effects of supports and bacteria on biqfUm formation 

As the bacterial contact-angle curve (Fig. 2) plateaued temporarily at 1.5 - 2.5 h, the 

contact angle, 0, of L. easel was determined to be 26.7°. Because 0 was less than 40°, L. 

casei was considered to be hydrophilic [14]. The contact angles range of the PCS and PP 

discs was 88.3° to 112.0° and 93° to 99°, respectively, (Table 1), which indicated that all 

supports possessed a hydrophobic surface. Statistical analysis of the contact angles showed 

that SH, YE, and S (P < 0.0001) decreased the supports hydrophobicity, whereas OH, RBC, 

and BA increased the hydrophobicity of the supports (P < 0.005). Van Loosdrecht et al. [15] 

concluded that hydrophobic bacteria will adhere to hydrophobic siirfaces more readily than 

hydrophilic bacteria. Therefore, the hydrophilic L casei will favor attachment to less 

hydrophobic PCS with SH, YE, and salts than to the more hydrophobic PCS with OH, RBC 

and BA. This observation was supported by viable attached-cells counts on the supports 

(Fig. 3). AU sxipports with SH (P < 0.03), YE (P < 0.0001), and S (P < 0.007) increased the 

biofilm population. Indeed, the contact angle of supports with SH-PCS and OH-PCS had a 

high correlation (r = 0.79 and 0.82, respectively) with the viable attached-cells on the 

supports (biofilm population) (Fig. 3) with the exception of PCS containing jvist YE and 

RBC together. In addition, the SH-PCS had a relatively higher cell-attachment range (5.7 to 

23.0 X 10* cfu/g supports) than the OH-PCS (2.6 - 7.5 x 10* cfu/g supports). Furthermore, 

the YE and S hydrophobicity reduction effects had a greater impact on the BA-PCS than the 

RBC-PCS. For example, the contact angle of OHYEBAS-PCS and SHSFYEBAS-PCS was 

much less than the contact angle of OHBA-PCS and SHSFBA-PCS by 14.3° and 6°, 
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respectively, whereas, the contact angle of OHYERBCS-PCS and SHSHYERBCS-PCS was 

1.7° and 2.7° less than the OHRBC-PCS and SHSFRBC-PCS, respectively. Hence, BA-PCS 

with SH, YE, and S had a less hydrophobic surface and might have a greater biofilm 

population. This was supported by the SHSFYEBAS-PCS, which had the greatest viable 

cells attachment, 2.3 x 10' cfii/g supports, among all the supports (Fig. 3). In all instances, 

PP-discs had the fewest average viable-cells attached on its surfaces, 4.1 x 10"* cfu/g supports, 

although its average contact angle, 96.7°, was lesser than most of the PCS supports (Table 1). 

This might be due to the lack of complex nutrients leaching and/or porosity of the PP discs. 

Batch fermentation of lactic acid 

Lactic acid concentration in the PCS simulated RBF was highly associated with the 

MM cell density (r = 0.96) (Fig. 4), and discs viable attached-cell-counts (r = 0.85) (Fig. 5). 

These results indicated that the lactic acid production in all instances was determined by both 

the free suspended-cells concentration in the MM and the immobilized-cell (biofilm) 

population on the supports. Negligible lactic acid concentration and cell absorbance was 

observed in the stispended cells controls and the PP discs controls under all conditions. 

Because the biofilm population of PCS was affected by its relative hydrophobicity, 

lactic acid production was expected to be influenced also by the contact angle of the supports. 

As indicated in Fig. 6, the lactic acid concentration and contact angle of SH-PCS and OH-

PCS had a 0.66 and 0.79 correlation coefficient (r), respectively. Statistical analysis of the 

influence of PCS agricultural ingredients on the suspended cells density and lactic acid 

production was comparable to their effects on contact angle and biofilm population. SAG 

ANOVA output indicated that SH (P < 0.0009) and YE (P < 0.0001) increased cell 
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absorbance in the MM and SH (P < 0.02), YE (P < 0.0001), and SF (P < 0.02) enhanced 

lactic acid production. The impact of SH, YE, and SF on the suspended cells density (620 

nm) of BA-PCS was greater than that of the RBC-PCS. Consequently, SHYEBA-PCS and 

SHSFYEBAS-PCS had 1.5 and 1.8 cell absorbance, respectively, whereas, SHYERBC-PCS 

and SHSFYERBCS-PCS had 1.1 and 1.4 cell absorbance, respectively (Fig. 4). Similarly, 

BA-PCS and RBC-PCS increased lactic acid production. Hence, SHYEBA-PCS and 

SHSFYEBAS-PCS had 6.8 and 7.6 g/L lactic acid, respectively, whereas, SHYERBC-PCS 

and SHSFYERBCS-PCS had 5.6 and. 6.8 g/L lactic acid, respectively (Fig. 5). 

Scanning electron microscopy (SEM) 

SEM photographs illustrated that the hulls were well mixed and that agricultural 

materials were spread among the PP matrix in the PCS (Fig. 7C). This produced a network 

with grooves (g), ridges (r), and pits (Fig. 7C), whereas the PP discs had a relatively smooth 

and flat surface (Fig. 7A). The agricultural material increased surface area and provided 

sheltered regions from hydrauhc shear forces for bacterial attachment on the PCS surfaces. 

These observations matched with those obtained by Masol-Deya et al. [13] and also partly 

explained why the less hydrophobic PP discs did not result in a higher cells attachment. 

SEM micrographs also indicated that the YE-PCS had denser and larger cell clusters (Fig. 

7D) than PP discs (Fig. 7B). Furthermore, extensive electron-opaque fibrillar networks (f) 

were observed (Fig. 7D). This suggested the production of exopolysaccharides by Lcasei 

biofilm. The exopolysaccharide network as observed in SEM micrographs paralleled those 

of Leppard and Bakke (1986), which also showed the presence of 5 nm electron-opaque 

fibrils in biofilms of Psuedomonas aeruginsoa [1]. 
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Discussion 

The results strongly indicate that PCS, besides being able to provide surfaces and 

hydraulic shear-forces shelters for biofilm formation, were also able to supply complex 

nutrients for bacterial growth. The contact angle of L casei was within the value range of 

Thiobacillus and Bacillus contact angles (26.8° and 32.6°, respectively) as reported by Van 

Loosdrecht et al. [15]. Hulls were necessary for increasing PCS surface area and providing 

sheltered regions from hydraulic shear forces by forming porous network with grooves and 

ridges. Of the two types of hulls evaluated, SH outperfomied OH by being able to lower 

PCS hydrophobicity and by having better lactic acid production. This result was similar to 

that of Demirci et al. [8] with PCS chips (25% agricultural materials), which demonstrated 

that SH-PCS had a better yield (93.6%) and higher productivity (0.8 g/L/h) than OH-PCS 

(yield: 90.6%, productivity: 0.64 g/L/h) in continuous lactic acid fermentation with L casei. 

Salts were another ingredient that could reduce the hydrophobicity of PCS and enhance 

attachment of cells on the supports. 

Because of the MM used, negligible cell density and lactic acid production in the two 

controls (suspended cell culture and PP discs) confirmed L casei fastiduous nature [11]. 

Moreover, this also demonstrated that PP discs in minimal medium could not supply the 

required complex nutrients to the bacteria for growth and lactic acid production. Among the 

minor agricultural ingredients added, YE was the most outstanding additive. YE, not only 

lowered the hydrophobicity of the PCS dramatically, but it also exerted a large impact on the 

increase of both the biofilm and the MM cell density, which in turn, greatly enhanced lactic-

acid production. The favorable effects of YE were a result of its hydrophilic and solubility 
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property. This is an important factor because it indicates the possibility of lactic acid 

fermentation in minimal or reduced complex nutrients meditmti, which in turn, would lower 

the overall fermentation cost significantly. Among all the PCS evaluated, SHSFYEBAS-PCS 

had the greatest viable attached-cells coimts, the highest lactic-acid concentration and 

suspended cell density in the BP and a relatively small contact-angle. All these results 

indicated that SHSFYEBAS-PCS possessed the greatest potential to be used as nutrient 

carrier and biofilm support for commercial production of lactic acid in reduced complex 

nutrient mediimi. 
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Table 1. Composition of plastic composite supports. 

Supports Ingredients of extrusion mixture % (w/w)' S 

PP HULLS SF YE RBC BA 

SH 50 50, SH - - - - -

OHSF 50 40, OH 10 - - - -

OHYE 50 40, OH - 10 - - -

SHSFYE 50 40, SH 5 5 - - -

OHRBC 50 40, OH - - 10 - -

SHSFRBC 50 40, SH 5 - 5 - -

SHYERBC 50 40, SH - 5 5 - -

OHSFYERBC 50 35, OH 5 5 5 - -

CHS 50 50, OH - - - - -r 

SHSFS 50 40, SH 10 - - - -r 

SHYES 50 40, SH - 10 - -
4-

OHSFYES 50 40, OH 5 5 - -

SHRBCS 50 40, SH - - 10 - -r 

OHSFRBCS 50 40, OH 5 - 5 - -r 

OHYERBCS 50 40, OH - 5 5 - -r 

SHSFYERBCS 50 35, SH 5 5 5 - -r 

OHBA 50 50, OH - - - 10 -

SHSFBA 50 40, SH 5 - - 5 -

SHYEBA 50 40, SH - 5 - 5 -

OHSFYEBA 50 35, OH 5 5 - 5 -

SEfflAS 50 40, SH - - - 10 -r 

OHSFBAS 50 40, OH 5 - - 5 -r 

OHYEBAS 50 40, OH - 5 - 5 -r 

SHSFYEBAS 50 35, SH 5 5 - 5 -

PP (Control) 100 - - - - - -

a PP; polypropylene, OH: oat hulls, SH: soybean hulls, SF; soybean flour, YE: yeast extract, 
RBC: dried bovine red blood cells, BA; dried bovine albumen, S: salt. 
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Table 2. Physical properties of plastic composite supports. 

Supports' Bulk volume cm^ b Weight/disc 
mg/disc' 

Supports contact angle 
(degree) '* 

Extrusion mixture 
water %' 

SH 21 204 106 0.7 

OHSF 22 159 99 2.4 

OHYE 24 150 94 2.4 

SHSFYE 20 182 102 0.6 

OHRBC 24 161 102 2.6 

SHSFRBC 19 176 104 1.0 

SHYERBC 22 179 112 1.1 

OHSFYERBC 24 150 103 2.8 

OHS 23 185 101 2.8 

SHSFS 19 197 104 0.8 

SHYES 20 179 93 1.1 

OHSFYES 21 182 95 3.0 

SHRBCS 20 170 104 12 

OHSFRBCS 24 164 92 2.1 

OHYERBCS 25 170 100 32 

SHSFYERBCS 20 174 101 12 

OHBA 22 200 103 2.0 

SHSFBA 20 197 99 0.8 

SHYEBA 20 181 100 0.9 

OHSFYEBA 25 164 93 3.3 

SHBAS 20 154 101 1.0 

OHSFBAS 23 182 92 2.3 

OHYEBAS 24 176 88 2.4 

SHSFYEBAS 20 168 93 1.0 

PP (Control) 24 217 97 / 

a PP: polypropylene, OH: oat hulls, SH: soybean hulls, SF: soybean flour, YE: yeast extract, 
RBC:cIried bovine red blood cells, BA: dried bovine albumen, S: salt. 

b Bulk volume of 5 g of PCS. Values were average of two replicates. 
c Each sample contained 5 g of supports. Values were average of two replicates. 
d Values were average of three replicates. 
e Percent moisture was obtained by convection drying method. Values were means of two replicates. 
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Figare legends list 

Fig. 1. Shape of deposited water droplet on PCS/PP discs and L casei cells lawn for contact 

angle determination. 

Fig. 2. Relationship between contact angle of water droplet and drying time of L. casei cells 

lawn. 

Fig. 3. Relationship between contact angle and L casei attachment on supports surface 

during batch fermentation. LSD (P < 0.05) of contact angle and bacterial attachment 

was 4.3° and 0.58 x 10' cfu/g support, respectively. The # was not included in the 

calculation of r. 

Fig. 4. Relationship between L. casei suspended cell density of minimal medium and lactic 

acid production during batch femientation. LSD (P < 0.05) of cell density and lactic 

acid concentration was 0.58 absorbance and 2 g/L, respectively. 

Fig. 5. Relationship between biofilm population on supports and lactic acid production 

dxiring batch fermentation. LSD (P<0.05) of viable cells attached on supports and 

lactic acid concentration was 0.57 x 109 cfii/g supports and 2 g/L, respectively. 

Fig. 6. Relationship between L. casei contact angle and lactic acid production during batch 

fermentation. The LSD (P<0.05) of contact angle and lactic acid concentration was 

4.3° and 2 g/L, respectively. The # was not included in the calculation of r. 

Fig. 7. Scanning electron micrographs of the outer surface of the PCS and polypropylene 

disc with L. casei biofilms in minimal medium. (A) Smooth outer surface of 

polypropylene discs. Bar, 25 nm. (B) Enlargement of the box in (A) to show a small 

cluster of L. casei. Bar, 5 |am. (C) Rough outer surface of OHYERBCS-PCS discs 
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with grooves [g] and ridges [r]. Bar, 180 ^m. (D) Surface of OHYERBCS-PCS discs 

enlarged to show large clusters of L. casei with fibrillar networks [f] formed firom the 

exopolysaccharides of the biofilms. Bar, 5 fun. 

WATER DROPLET WATER DROPLET 

PCS OR PP DISC 

d: CONTACT ANGLE 

LAWN OF CELLS ON HLTER PAPER 

Fig. 1. Shape of deposited water droplet on PCS/PP discs and Lcasei cells lawn for contact 
angle determination 
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Fig. 2. Relationship between contact angle of water droplet and drying time of L. casei cells 
lawn. 
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Fig. 7. Scanning electron micrographs of the outer surface of the PCS and polypropylene 
disc with L. casei biofilms in minimal medium. (A) Smooth outer surface of 
polypropylene discs. Bar, 25 nm. (B) Enlargement of the box in (A) to show a small 
cluster of L. casei. Bar, 5 nm. (C) Rough outer surface of OHYERBCS-PCS discs 
with grooves [g] and ridges [r]. Bar, 180 ^im. (D) Surface of OHYERBCS-PCS discs 
enlarged to show large clusters of L. casei with fibrillar networks [f] formed from the 
exopolysaccharides of the biofilms. Bar, 5 jim. 
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NUTRIENTS LEACHING AND END PRODUCT ACCUMULATION IN PLASTIC 

COMPOSITE-SUPPORTS FOR L(+)-LACTIC ACID BIOFILM FERMENTATION 

A paper submitted to Applied and Environmental Microbiology 

Kai-Lai G. Ho, Anthony L. Pometto m'*, Paul N. BQnz, and All DemircL 

Abstract 

Plastic composite-supports (PCS) (50% polypropylene(PP) and 50% agricultural 

products) produced by twin-screw high-temperature extrusion were soaked consecutively in 

20-mL and then three 100-mL sterilized minimal medium at 37°C to simulate twenty 20-mL 

repeated-batch fermentation (RBF). Leached nutrients in minimal medium by the PCS and 

PP discs (control) were evaluated by Micro-Kjeldahl Method, by absorbance at 260,275, and 

280 mn, and by bioassays using Lactobacillus casei subsp. rhamnosus (ATCC 11443). 

Leached nitrogen in 20 mL initial soaking solution had a high correlation with the bioassay 

(cell density, r = 0.87) and with the absorbance at 260 nm (r = 0.95). PCS with only yeast 

ejctract as the minor agricultural ingredient had 51 to 60% initial leached nitrogen. PCS 

blended with bovine albumen, red blood cells, and soybean floiar-leached nutrients gradually 

(20 - 30% initial leached nitrogen) and could still maintain 1 g/L lactic acid and cell density 

(absorbance at 620 nm:0.4-0.6) after the twentieth 20-mL SRB. PP discs under all 

circumstances gave negligible lactic acid production and cell density. PCS discs (20 mL bulk 

volume) were soaked in 30% lactic acid solution for 72 h at 45°C. Soaked PCS discs were 
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rinsed three times, then heat-treated (121°C, 15 min) in 15 mL deionized water. The amount 

of lactic acid in the residual 30% lactic-acid soaking-solution and the PCS-disc-extracted 

solution were determined by high-performance liquid chromatograph (HPLC). Lactic acid 

accumulation in PCS was shown to be mainly due to absorption and had no correlation with 

lactic acid production or biofihn formation. 

Introduction 

Polylactic-acid-degradable plastics are polyester thermoplastics with properties 

similar to acrylics and polystyrene. Some of its applications are disposable thermoplastic 

products (wraps, cups, insulators), refuse and retail bags, and agricultural mulch film, which 

constitutes a potential market size of 600 to 800 million Ib/yr [3,11]. To compete in the 

commodity plastics market, the development of advanced and economic fermentation 

processes that yield a relatively pure lactic acid solution is required. Homofermentative 

Lactobacillus is the typical production organism. Lactobacilli are fastidious organisms, and 

their growth requires a specific supply of complex nutrients such as vitamins, nucleotides, 

amino acids and inorganic salts [10]. Hence, expensive complex nutrients such as yeast 

extract, when added to the culture medium, significantly increase the overall fermentation 

cost [11]. 

Biofilms are a natural form of cell inmiobilization by which microorganisms attach to 

solid surfaces [1]. Immobilized cells are used to increase the overall cell density in the 

bioreactor [5,6]. This laboratory recently confirmed lactic-acid biofilm fermentation by 

using plastic composite-supports discs (50% polypropylene and 50% agricultural products 
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[w/w]) with L casei subsp. rhamnosus in minimal medium. The results in that study 

indicated that, along with being a biofilm support, the PCS was also a complex nutrients 

carrier [9]. Hence, methods for evaluating the PCS total complex nutrients, the amoxmt of 

available complex-nutrients leached, and the operational time of PCS as a complex nutrient 

carrier are essential for PCS blend selection. 

Lactic acid is known to have antimicrobial activity [8] and end-product inhibition on 

lactate dehydrogenase, the enzyme that catalyzes the formation of lactic acid from pyruvate 

acid [15]. The PCS discs were shown to be porous and permeable to liquid [9]. This 

indicates possible lactic-acid accumulation inside the PCS, which in turn, might impede 

biofilm formation and/or lactic acid fermentation. 

The study reported here demonstrated that accumulation of lactic acid inside the PCS 

was mainly due to absorption and that it had no impact on lactic acid production nor biofilm 

formation. In addition PCS containing soy hulls, soybean flour, yeast extract, and bovine 

albumen behaved as a slow-release-complex nutrients carrier for lactic-acid biofilm 

fermentation in minimal medium environment. 

Materials and methods 

Plastic composite-supports 

Plastic composite-supports (PCS) discs, which contained 50% polypropylene [PP] 

(Quantum USI Division, Cincinnati, OH) and 50% agricultural materials (w/w), were 

produced by high-temperature extrusion in a Brabender with PL2000 twin-screw co-rotating 

extruder (Model CTSE-V, C.W. Brabender Instruments, Inc., South Hackensack, NJ). 
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Incorporation of ground (20 mesh) oat hulls (OH) (Ralston Foods, Cedar Rapids, lA), ground 

(20 mesh) vacuum-dried (48 h at 1 ICC and 30 inches Hg) soybean hulls (SH) (Cargill Soy 

Processing Plant, Iowa Falls, lA), defatted soybean flour (SF) (Archer Daniels Midland, 

Decature, EL), yeast extract (YE) (Ardamine Z, Champlain Industries Inc., Clifton, NJ), dried 

bovine albumin (BA) (American Protein Corp., Ames, LA), dried bovine red blood cells 

(RBC) (American Protein Corp., Ames, LA), and mineral salts (S) (0.2% sodium acetate, 

0.12% MgS04-7H20 and 0.006% MnS04-7H20) into PCS discs was evaluated. Materials to 

be extruded were first mixed in a separate container on a weight basis before being poured 

into the extruder hopper. The mixture was extruded (11 and 15 rpm for soybean hulls and oat 

hulls composite supports, respectively) as a continuous tube through a medium pipe die (3.2 

mm ED and 12.7 mm OD) with barrel temperatures of 200,220, and 200°C and a die 

temperature of 167°C. The barrel exhaust vent was plugged because the release of moisture 

at the die was essential for producing a porus support. Composite tubing was extruded onto a 

steel rod and air cooled slowly without fanning. Tubes with 10 to 11 mm OD were then cut 

into discs. Composition and interstitial volume of each PCS are listed in Table 1. 

Polypropylene discs were bored out of a polypropylene sheet (3.5 mm thick) with cork borers 

7 mm ID and 11 mm OD. 

Lactic acid accumulation assay 

L(+)-Lactic acid absorption to PCS was evaluated according to the procedures 

outlined in Fig. 1. Screw-cap culture-tubes (in replicates of three) with weighed supports 

were sterilized dry (45 min at 12 PC) alongside control culture tubes without supports, with 

equivalent-weight of filter papers, unground oat hulls, unground soy hulls, or PP discs. Each 
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culture tube was filled with 20-mL sterilized deionized-water and incubated in a 45°C water 

bath for 72 h to hydrate the materials inside the culture tubes and to solubilize any readily 

leachable material from the PCS and hulls. Initial residual soaking-solution volume was 

measured, discarded, and aseptically replaced by 15 mL sterilized 30% L(+)-lactic-acid-

solution (LAS) (30% lactic acid, 0.4% yeast extract, 2% glucose and mineral salts solution). 

The screw cap junctions were wrapped with parafilm (to prevent moisture lost due to 

evaporation) and the culture tubes were subsequently incubated in a covered water bath at 

45°C for 2 weeks. After incubation, the 30% LAS in each culture tube was decanted, and the 

supports in each tube were rinsed three times in 15 mL deionized water. The 30% LAS and 

the rinsed solutions from each tube were collected in a 100-mL volumetric flask. The final 

flask volume was made up to 100 mL with deionized water. The lactic acid concentration of 

the 30% LAS after treatment was regarded as the final residxial lactic acid not absorbed by 

the materials, whereas, the lactic acid concentration of the culture tube without 

supports/materials was treated as the initial 30% LAS lactic acid concentration. Treated and 

washed materials from each tube were subsequently transferred to a 100-mL dilution bottle 

containing 15 mL deionized water and were autoclaved (15 min at 121°C) in an effort to 

release the absorbed lactic acid. L(+)-Lactic acid concentration of the initial 30% LAS, final 

residual 30% LAS, and the hot-water treatment solution was determined by high-

performance liquid chromatography (HPLC). The interstitial volume of each type of support 

was estimated by the following formula: 

Interstitial volume (mL) = lactic acid absorbed in the PCS Cms't (1) 
Initial 30% LAS lactic-acid concentration mg/mL 
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Total nitrogen in PCS 

A modified standard AO AC micro-kjeidahl method (920.39C) was used to determine 

the total nitrogen in the unground soybean hulls, unground oat hulls, soybean flour, yeast 

extract, dried bovine albumen, dried red-blood cells, and PCS. Two grams of PCS (0.2 g for 

agricultural material) was weighed and digested by 10-mL concentrated sulfiiric-acid 

digestion in the presence of Copper(II) selenite dihydrate (Aldrich Chemical Company, Inc., 

Milwaukee, WI) and potassium sulfate (catalysts). The liberated ammonia was distilled and 

collected by a receiving flask containing 10 mL 1% boric acid. The amount of ammonia in 

the distillate was determined by titration with 0.1 N HCl. 

Leaching ability of PCS 

Five grams of PCS or PP (control) discs were sterilized dry (45 min at 121°C) in a 20-

mL screw-cap cultured tube in duplicate. Twenty milliliters of sterilized minimal medium 

(MM) (2% glucose and mineral salts solution) was aseptically added to the culture tubes, 

which were then incubated a 37°C water bath for 48 h. The initial soaking solution was 

aseptically transferred into sterilized screw-cap culture tubes. 

Ten milliliters of the initial MM soaking-solution was retrieved from each culture 

tube, and the amount of nitrogen present in the solution was determined by the modified 

standard AOAC micro-kjeldahl method already described. The initial leached nitrogen % 

from the PCS was calculated by the formula; 

Initial Leached Nitrogen (%) = Nitrogen in 20 mL initial soaking solution x 100 % (2) 
Total nitrogen in 5 g PCS 

Another sample was retrieved from the remaining initial soaking-solution for absorbance 
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measurement (with appropriate dilution) at 260,275, and 280 nm by a Beckman Model DU 

50 UVA^S spectrophotometer (Beckman Instrument Inc., Irvine, CA) to evaluate leachable 

aromatic compoimds. 

Bacterial culture preparation 

Lactobacillus casei subsp. rhamnosus (ATCC 11443), a homofermenter of L(+)-Iactic 

acid, was obtained from the American Type Culture Collection (Rockville, MD). Stock 

cultures were maintained in Lactobacillus MRS broth (Difco Laboratories, Detroit MI) at 

4°C with monthly transfers to fresh medium. Ten milliliters of an active L. casei culture (18 

h in MRS broth at 37°C) was inoculated into 100 mL of lactic acid fermentation (LAF) 

medium [2% glucose (Glu), 0.4% yeast extract (YE) (Ardamine Z, Champlain Industries 

Inc., Clifton, NJ), and salt solution (0.05% KH2PO4,0.05% K2HPO4,0.1% sodium acetate, 

0.06% MgS04-7H20, and 0.003% MnS04-7H20)] [4] which was then incubated for 18 h at 

37°C. Centriftigation (16300 x g, 20 min) followed by a rinsing with 100 mL of MM were 

used to remove LAF medium from the active cells. The rinsed active cells were then 

resuspended into 100 mL of sterilized MM and used in the bioassay of the PCS soaking 

solution. 

Bioassays of PCS leachate 

Five grains of PCS or PP (control) discs were sterilized dry (45 min at 121°C) in a 20-

mL screw-cap culture mbe. The sterilized discs were aseptically transferred into a dilution 

botde and soaked in 20 mL of sterilized MM at 37°C water bath in duplicate for 48 h. Ten 

milliliters of the MM soaking solution was retrieved from each dilution bottle, and the 

amount of nitrogen present in the solution was assayed by the modified standard AO AC 
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micro-lgeldahl method already described. Another 5 mL of the soaking solution was 

aspetically transferred from the bottle into a sterilized 20-mL screw-cap culture tube for 

bioassays. Each culture tube was inoculated with 0.05-mL washed and active L. casei culture 

(18-h culture) and incubated in a 37°C water bath for 48 h. Lactic acid produced, glucose 

consumed, and cell density (absorbance at 620 nm) of the bioassayed soaking solution were 

determined by methods to be described. Another sample was retrieved from the remaining 

soaking solution, which was then appropriately diluted for absorbance measurement at 260, 

275, and 280 nm. The whole process was repeated two times by adding 100-mL sterilized 

MM, which simulated five and ten 20-mL repeated-batch fermentations. 

Simulated Repeated-batch fermentation (RBF) studies 

Simulated RBF assay without pH control was developed to characterize the supports' 

nutritional benefits. Suspended cells and PP discs were used as controls. PCS or PP discs (5 

g) were sterilized dry (45 min at l2rC) in 20-mL screw-cap culture tubes. The sterilized 

discs were aseptically transferred into a dilution bottle containing 20 mL sterilized MM and 

incubated m a 37°C water bath for 24 h. This initial soaking solution was decanted 

aseptically. 

Each dilution bottle was then refilled with 20 mL of sterilized MM, inoculated with 

0.2-mL active L. casei (18-h culture) then reincubated in a 37°C water bath for 48 h. The 

first RBF medium was aseptically decanted, and 80 mL of fresh sterilized MM was refilled 

into the dilution bottle, thus simulating an equivalent of five 20-ml RBF. The decanting and 

refilling processes were repeated with three consecutive transfers in 100-mL sterilized MM, 

which subsequently simulated ten, fifteen, and twenty 20-mL RBF. Decanted fermented 
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media from each simialated RBF were evaluated for lactic acid produced, glucose consumed, 

and cell density (620 nm). 

Viable biofUm population on the supports 

A modified method of Dickson et al. [7] was used to enumerate the relative biofilm 

population on the PCS. After the first simulated RBF in MM, five discs (both PCS and PP) 

were aseptically removed from each RBF bottle and transferred into a dilution bottle 

containing 100 mL sterilized 0.1% peptone-water. Each bottle was vigorously shaken to 

remove nonbiofilm cells. The rinsed supports were then aseptically transferred into a screw-

cap culture mbe with 9 mL sterilized 0.1% peptone water and 5 g of sterilized sand. The 

culture tube was subsequently vortexed vigorously at 30-s intervals for a total of 1.5 min. 

The culture tube mediimi was then serially diluted into sterilized 0.1% peptone (10^ to 10^). 

Colony-forming units (cfii) were determined for each tube by using Lactobacillus MRS agar 

spread plates in duplicates. Finally, the five sand-stripped discs from each RBF bottle were 

rinsed (water), convection oven dried (70''C, 24 h), and weighed. Preliminary data on some 

PCS blends showed that the biofilm population in minimal medium with no pH control was 

similar for 20 batches of repeated-batch fermentation. Hence, only the PCS biofilm 

population of the first RBF was evaluated in this study. 

Bioassayed and fermented media analysis 

L(+)-Lactic acid and D-glucose concentrations were analyzed by a Waters high-

performance liquid chromatograph (HPLC) (Milford, MA) equipped with Waters model 401 

refractive index detector and a Bio-Rad Aminex HPX-87H column (300 x 7.8 mm) (Bio-Rad 

Chemical Division, Richmond, CA) using 0.012 N H2SO4 as the mobile phase. Bacterial 
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growth in LAF medium was followed by measurement of the absorbance at 620 mn with a 

Spectronic 20 spectrophotometer (Milton Roy Co., Rochester, NY). 

Statistical analysis 

Two replications of a 2^"' design [2] were used to evaluate the effect of SH, OH, YE, 

SF, RBC, BA, and S on the characteristics of PCS in all the tests performed. The five factors 

evaluated in the first replication were hulls (OH or SH), YE, SF RBC, and S. The five 

factors studied in the second replication were hulls (OH or SH), YE, SF, BA, and S. In each 

replication 16 treatments in duplicate (unless otherwise stated) were examined. The data 

from each test were analyzed by Least Significant Difiference (LSD) and Analysis of 

Variance (ANOVA) using Statistical Analysis System Package (version 6.03) (SAS Institute, 

Inc., 1985). 

Results and discussion 

Lactic acid accumulation and interstitial volume of PCS 

If the accumulation of lactic acid was mainly due to absorption, then the lactic- acid 

concentration inside the PCS and the lactic acid concentration in the medium will be the 

same. Furthermore, the lactic acid accumulated inside the PCS (5 g) should be inversely 

proportional to the amount of residual lactic acid in the outside medimn, and their sum 

should be equal to the initial amount of lactic acid in the 15 mL of 30% LAS. Results 

showed that all the PCS behaved similarly to the filter paper controls, which resembled 

absorption. The amount of lactic acid accumulated in the PCS, as indicated by the total lactic 

acid being extracted from the PCS through high-temperature treatment, was inversely 
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correlated (r = - 0.95) with the amount of lactic acid left in the 30% LAS after 2 weeks' 

soaking (Fig. 2). This strongly supported the assumption that there were no specific sites in 

the PCS for the binding of lactic acid and that the accumulation of lactic acid in the supports 

was mainly due to absorption, which could be easily retrieved by physical methods such as 

high temperature treatment. This assumption was ftirther confirmed in that the amoimt of 

lactic acid accumulated in the PCS neither had any correlation with the biofilm population on 

the supports nor with the lactic acid production of L. casei during batch fermentation (Fig. 3). 

The lactic acid absorbed in the PCS served as a marker to determine the PCS 

interstitial volume. The larger the interstitial volume, the more lactic acid was absorbed 

inside the PCS (r = 0.77) and the lesser the amoimt of lactic acid remaining in the medium 

outside the PCS (r = - 0.71) (Fig. 4). The interstitial volume of the PCS was calculated by 

using equation [1] (Table 1). From SAS ANOVA, SH (P < 0.0005), RBC (P < 0.0001) and 

BA (P < 0.0044) addition increased the interstitial volume of PCS, which in turn, suggested 

that the liquid transport capacity of these PCS was greater. 

PCS total nitrogen and leaching ability 

The percentage protein of the agricultural materials resulted from the micro-kjeldahl 

analysis were similar to the values obtained from literature [12,17 ] and product-

specification data sheets (Table 2). SH had greater protein content than OH. Among the 

minor agricultural ingredients, dried RBC and BA had more protein content than did YE and 

SF. The PCS total nitrogen (mg/g) obtained from Micro-kjeldahl analysis matched the simi 

of the agricultural ingredients nitrogen content (r = 0.96) (Fig. 5). Thus indicating that most 

of the protein was retained in the PCS after the extrusion process. 
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Results of the initial soaking-solution Micro-Iqeldahl analysis showed that supports 

with high total nitrogen did not correlate with high initial leached-nitrogen percentage. As 

shown in Fig. 6, the initial leached-nitrogen percentage of SHSFYEBAS-PCS was 23% when 

its total nitrogen was 114 mg nitrogen per g support, whereas OHYE-PCS had 63% initial 

leached nitrogen when its total nitrogen was 49 mg nitrogen per g support. These results 

indicated that complex nutrients in PCS with higher initial leached-nitrogen-percentages 

depleted quickly (within 1 to 5 RBF). This, in turn, led to the reduction of L. casei growth in 

long-term RBF, whereas PCS with lower initial leached-nitrogen percentage, released its 

complex nutrients gradually and thus sustained a longer operational life. This was supported 

by the simulated RBF analysis, which showed that, although OHYE-PCS and OHSFYES-

PCS both had similar total nitrogen content (49 and 42 mg/g support, respectively), they 

performed quite differently at the 20th RBF (Fig. 7). As indicated by the negligible lactic 

acid concentration in the minimal medium, OHYE-PCS with a 63% initial leached nitrogen 

could no longer provide nutrients for the growth of L. casei at the 20th simulated RBF, 

whereas OHSFYE-PCS having a 42% initial leached nitrogen still supported bacterial growth 

and obtained a final 1.18 g/L lactic acid concentration in the minimal medium. Indeed, 

SHSFYEBAS-PCS, which had the highest lactic acid concentration (1.44 g/L) by the end of 

the 20th simulated RBF, possessed only an initial 23% leached nitrogen. SAS ANOVA 

supported this observation and indicated that SH, SF, RBC, and BA slowed down the 

released of nitrogenous compounds from the PCS, whereas OH and YE both hastened the 

leaching of nitrogenous compoimds from the supports (P < 0.0001). 
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The leaching ability of PCS was evaluated also by measuring the soaking solution 

absorbance at 260,275, and 280 nm. The selection of these wavelengths was based on the 

compounds expected to be leached out from the PCS. The 260 nm corresponds to the of 

L-phenylalanine [13], riboflavin [16], and some lignin-derived aromatic compoxmds such as 

vanillic acid [14]. The 275 mn corresponds to of L-tyrosine [13], cobalamin [16], 

syringic acid, guaiacol, and catechol [14]. The 280 nm correpsonds to A„ax of L-tryptophan, 

folacin [16], vanillin, and veratraldehyde [14]. Hence, the absorbance at these wavelengths 

could indicate the concentration or presence of nutrients such as aromatic amino acids 

(nitrogenous compormds) and water-soluble vitamins or of the released of lignin-derived 

aromatic fragments from the hulls, which might inhibit the growth of microorganisms. SAS 

ANOVA output demonstrated that PCS with SH had greater absorbance than supports with 

OH at all three wavelengths (P < 0.0001). Among all the minor agricultural ingredients, PCS 

with YE had greater absorbance than supports without YE (P < 0.0001). 

Bioassays of the PCS soaking solution showed that the cell density and lactic acid 

concentration of the initial soaking solution had a correlation of 0.80 to 0.86 and 0.70 to 0.76, 

respectively, with the soaking solution absorbance at 260, 275, and 280 nm (Table 3 and Fig. 

7). This indicated that sufficient complex nutrients were being released from the PCS to 

support the growth of L. casei in minimal mediimi. For PCS with hulls alone as the 

agricultural ingredients (OH-PCS and SH-PCS), negligible lactic-acid-concentration was 

detected, although an increase in cell density were observed. In contrast, as shown by SAS 

ANOVA, YE significantly increased the cell density of the soaking solution in the bioassays 

analysis (P < 0.0001). This strongly suggested that hulls alone partly met the complex 
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nutrients requirements of L casei and the presence of minor complex ingredients such as YE 

was essential for the PCS to exhibit its nutrients carrier role. Indeed, the correlation 

coefficient between the initial soaking-solution lactic acid concentration and its absorbance at 

260 nm was improved from 0.76 to 0.84 (Fig. 8) when OH-PCS and SH-PCS values were 

removed from the data set. In addition, a high correlation of the initial soaking-solution 

leached-nitrogen concentration (analyzed by Micro-kjeldahl) with its cell density (r = 0.87) 

(Fig. 9) absorbance at 260,275, and 280 mn (r > 0.90) (Table 3) was demonstrated. This 

further proved that the nutrients in the form of nitrogenous compounds was a component of 

the PCS leachate, whereas the amount of lignin-derived aromatic compounds in the leachate 

was relatively small and posed no harmful effect on the growth of this fastidious bacteria. 

Bioassays of PP discs soaking solution demonstrated no leached nitrogenous-compoimds for 

the bacteria to grow in the minimal medium envirormient. 

Among the three wavelengths (260, 275, and 280 nm) used, 260 nm exhibited the 

highest correlation with the soaking solution leached-nitrogen Micro-kjeldahl values, the 

initial leached-nitrogen percentage, and the cell density of the initial soaking solution (Table 

3). This strongly suggested that 260 rmi would be the optimum wavelength to be used for 

evaluating the amount of nitrogenous compounds leached from the PCS. 

Accumulation of lactic acid in PCS due to absorption greatly removed the worr>- of 

end product accmnulation in the supports. SH outperformed OH by having greater protein 

content and possessing the ability to increase interstitial volume of PCS. As indicated by the 

leached nitrogen and 260 nm absorbance of soaking solution (Fig. 10), YE was the most 

outstanding minor complex ingredient for supplying nitrogenous compound in the PCS. 
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However, because of the fast leaching rate of YE from the PCS, other minor agricultural 

ingredients such as RBC, BA, and SF were essential to ensure a gradual release of 

nitrogenous compounds from the PCS. The results of this study showed that there is high 

potential for SHYE-PCS with SF, BA, and/or RBC to perform as slow-releasing nutrient-

carriers. Finally, SHSFYEBAS-PCS was demonstrated to have the highest lactic-acid 

concentration and cell density in 1st and 20th RBF, the greatest viable attached cells counts, a 

relatively small contact angle [9], and a gradual complex nutrients releasing rate. Hence, 

SHSFYEBAS-PCS is recommended for long- term biofilm lactic-acid fermentation studies in 

minimal medium. 
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Table 1. Composition and physical properties of soaking materials in lactic acid 

absorption assay 

Supports Ingredients of Plastic composite-supports % (w/w)* S Interstitial volume 

PP Hulls SF YE RBC BA (mL) / g support'' 

SH 50 50, SH - - - - 0:27 

OHSF 50 40, OH 10 - - - 0.30 

OHYE 50 40, OH - 10 - - 0.24 

SHSFYE 50 40, SH 5 5 - - 0.30 

OHRBC 50 40, OH - - 10 - 0.32 

SHSFRBC 50 40, SH 5 - 5 - 0.32 

SHYERBC 50 40, SH - 5 5 - 0.33 

OHSFYERBC 50 35, OH 5 5 5 - 0.30 

OHS 50 50, OH - - - -i- 0.25 

SHSFS 50 40, SH 10 - - -r 029 

SHYES 50 40, SH - 10 - -r 0.32 

OHSFYES 50 40, OH 5 5 - •r 0.30 

SHRBCS 50 40, SH - - 10 -r 0.36 

OHSFRBCS 50 40, OH 5 - 5 -r 0.31 

OHYERBCS 50 40, OH - 5 5 •r 0.31 

SHSFYERBCS 50 35, SH 5 5 5 - 0.36 

OHBA 50 50, OH - - - 10 0.32 

SHSFBA 50 40, SH 5 - - 5 0.30 

SHYEBA 50 40, SH - 5 - 5 0.31 

OHSFYEBA 50 35, OH 5 5 - 5 0.28 

SHBAS 50 40, SH - - - 10 + 0.30 

OHSFBAS 50 40, OH 5 - - 5 0.30 

OHYEBAS 50 40, OH - 5 - 5 -i- 0.33 

SHSF^TBAS 50 35, SH 5 5 . 5 0.30 
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Oat hulls 

Soy hulls 

Filter paper 

PP 100 
a PP: polypropylene, OH: oat hulls, SH; soybean hulls, SF: soybean flour, YE: yeast extract, RBC: dried 

bovine red blood cells, BA: dried bovine albumen, S: Salt. 
b Values were average of three replicates. 

100, OH 

100, SH 

Cellulose 
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Table 2. Percentage of protein (dry-weight basis) of agricultural ingredients determined 

by Micro-kjeldahl. 

Protein Soybean Oat hull Soybean Yeast Dried red Dried bovine 
hull flour extract blood cells albumen 

Micro-kjeldahl 9.8 3.4 52.1 68.8 86.8 84.7 
Method 

Published 8.8'' 1.6- 54.0" 68.0" 90.0= 80.0 = 
value S.T 

a % Protein = N x 6.25 

b Adapted firom table presented by Pearson [12]. 

c Adapted from table presented by Yoimgs and Brown [17]. 

d Adapted from product specifications of Champlain Industries Inc. (Clifton, NJ). 

e Adapted from product specifications of American Protein Corporation (Manning, lA). 
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Table 3. Correlation of initial soaking solution absorbance at 260,275, and 280 nm 

with initial soaking-solution leached nitrogen, initial nitrogen-leached 

percentage, and initial soaking-solution cell density. 

Initial soaking 
solution 

wavelength 

Correlation coefficient (r) Initial soaking 
solution 

wavelength Leached nitrogen in 
20 mL initial soaking 

solution ® 

Initial nitrogen 
leached 

percentage'' 

Cell density of initial 
soaking solution at 

620 rmi 

260 nm 0.95 0.82 0.86 

275 nm 0.92 0.80 0.82 

280 tmi 0.90 0.76 0.81 

a Nitrogen concentration determined by Micro-Igeldahl analysis. 

b Initial leached nitrogen percentage = Nitrogen in initial soaking solution Cmg") x 100% 
Total nitrogen in 5 g PCS (mg) 

c Cells absorbance of soaking solution (100 mL) at 620 nm. 
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Figure legends list 

Fig. 1. Schematic diagram ofnutrient-leaching and lactic-acid accumulation. PCSrplastic 

composite supports, MMminimal medium, PPrpolypropylene, LAS:lactic-acid 

solution. 

Fig. 2. Relationship between residual lactic acid (g) of 20-mL initial soaking solution and 

absorbed lactic acid (g) in plastic composite supports. 

Fig.3. Effects of absorbed lactic acid (g) in plastic composite supports on first RBF lactic 

acid production and biofilm population of L. casei. 

Fig. 4. Relationship of interstitial volume (mL/g support) with plastic composite-support 

absorbed lactic acid and residual lactic acid in 20 mL initial soaking solution. 

Fig. 5. Relationship between estimated and Micro-kjeldahl total nitrogen value (mg/g 

support) of plastic composite supports. 

Fig. 6. Relationship between initial leached-nitrogen percentage and total nitrogen of plastic 

composite supports as determined by Micro-kjeldahl. 

Fig. 7. Relationship between initial leached-nitrogen percentage and I. casei 20th simulated 

RBF lactic acid concentration of plastic composite supports. 

Fig. 8. Relationship between 100-mL soaking-solution absorbance at 260 lun and its 

bioassay cell-density (620 nm) ofL casei and lactic acid concentration. 

Fig. 9. Relationship between the amount of leached nitrogen in 20 mL initial- soaking 

solution and its bioassay cell density (620 nm) of L. casei. 

Fig. 10 Relationship between the leached nitrogen (mg) present in 20-mL soaking solution 

and its absorbance at 260 nm. 
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LEACHED NUTRIENTS ANALYSIS 

Dried PCS discs. 

Total nitrogen, analyzed 
by Micro-kjeldahl method. 

I 

Sterilized dried PCS C^g) soaked in 
20 mL of sterilized MM at 37*C for 48 h. 

Soaked solution decanted into { 
sterilized culture tubes. | 

Soaked PCS retained for simulated 
repeated-batch fermentation (RBF) 

—  -  -  I  

Bioassay of soaked i  

solution (L. casei, \ 
37*Cfbr48h). | 

Leached nitrogen 
a n a l y z e d  b y  M i c r o - j  

i kjeldahl method, i 

First simulated 20-mL RBF. 
(20 mL MM with L. casei 
at37*C for 48 h). 

Leached aromatic 
compounds measured 
at 260, 275. and 2S0 nm i 

Five simulated 20 mL | 
RBF. (80-mL MM. 
37*C for 48 h). 

MM decanted for 
HPLC and cell 
density analysis. 

Ten. fifteen, and twenty simulated 20-mL 
RBF. (3 consecutive 100-mL MM transfers). 

LACTIC-ACID ACCUMULATION ANALYSIS 

I Empty culture mbe and Culture-tube with 
I 5 g hulls, filter paper. PP. or dried PCS. 

i Materials in the culture-tube were sterilized 
I dry at 121 *C for 45 min. 

ISterilized materials were soaked with 20 mL : 
i sterilized deionized water for 72 h at 4S*C ! 
' and then decanted. j 

Hydrated materials were resuspended in : The decanted soaked 
I S mL sterilized 30% LAS for 2 weeks solution volume was 
at45*C. measured. 

Materials in the culture tube were 
transferred to a 100-mL dilution 
bottle containing 15 mL deionized 
water and then autoclaved. 

; Lactic acid concentration of hot-water 
j treatment solution was determined by HPLC. 

Lactic acid concentration 
of the 30% LAS after 
suspension was 
determined by HPLC. 

Fig. 1. Schematic diagram of nutrient-leaching analysis and lacti-acid accumulation 
analysis. PCS: plastic-composite support, MM: minimal medium, PP: 
polypropylene disc, LAS; lactic-acid solution. 
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OPTIMIZATION OF L(+)-LACTIC ACID PRODUCTION BY RING/DISC 

PLASTIC COMPOSITE-SUPPORTS THROUGH REPEATED-BATCH 

BIOFILM FERMENTATION 

A paper submitted to Applied and Environmental Microbiology 

Kai-Lai G. Ho, Anthony L. Pometto HI, and Paul N. Hinz. 

Abstract 

Plastic composite-supports (PCS) (35% soybean hulls, 5% yeast extract (YE), 5% 

soybean flour, 5% dried bovine albxmien, and 50% polypropylene) rings and discs, produced 

by twin-screw high-temperature extrusion. They were used to stimulate biofilm formation, to 

supply nutrients for Lactobacillus casei subsp. rhamnosus (ATCC 11443), and to reduce 

medium channeling. Four cvistomized reactors, three with 72.7 g rings and 72.3 g discs and 

one with suspended cells (control), were operated at 600 mL, 37°C and controlled pH 5 for 

66 days. Effects of yeast extract concentration (0.2, 0.4, and 0.8%), starting glucose 

concentration (SG) (4, 6, 8,10,12, and 16%), and medium recycling rate (0.75,1.5,3, 6 

cycles/h) were studied. L(+)-Lactic acid production and glucose consumption were 

determined by high-performance liquid chromatography (HPLC). Biofilm formation was 

evaluated by the stripping-sand method, scanning electron microscopy, and measurement of 

fireeze-dried medium exopolysaccharides. The viable cells covmt on the PCS surface in 0.2, 

0.4, and 0.8% YE Lactic-Acid-Fermentation medium (LAF) (8% glucose) was 7.1 x 10®, 8.5 
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X 10', and 2.4 x 10'° cfu/g PCS, respectively. PCS-bioreactors in 0.4 and 0.8% YE LAF 

mediiim shortened the lag time by 3-fold (control: 11 h, PCS:3.5 h) and 6-fold (control:9 h, 

PCS: 1.5 h), respectively. PCS-bioreactors, at all YE concentration, increased LA 

productivity by 40-70 %. PCS-bioreactors' total fermentation time with 0.2,0.4, and 0.8% 

YE LAF medium were 1.4,2.1, and 2.6 times faster than that of the control, respectively. 

PCS-bioreactors had its fastest productivity (4.26 g/L/h) at 10% SG, whereas the control 

(2.78 g/L/h) was at 8%. PCS biofilm lactic-acid fermentation can drastically improve 

fermentation rate under reduced complex nutrient addition. 

Introductioii 

A lactic acid molecule has two optical active isomers, D(-) and L(+) forms [12]. 

Optically-pure lactic acid solution is important for the production of polylactide because the 

physical properties of the polylactide are dependent on the stereochemistry of the individual 

lactic acid molecule [10]. Microbial fermentation is the only soxorce for producing optically-

pure lactic acid isomers. Lactobacillus casei subsp. rhamnosus is a homofermenter that 

produces solely L(+)-lactic acid [7]. Cell immobilization is a conomon way to increase cell 

density in fermentation. However, immobilizations of cells through calcium alginate beads 

and polyacrylamide gels are not widely employed in industry because of the high cost of 

immobilization, mass-transfer limitations, lack of stability of the biocatalysts, and changes in 

product pattern of reactions catalyzed by certain immobilized cells [3]. 

Biofilms are a natural form of cell immobilization [1]. Demirci and Pometto [4] 

demonstrated that lactic acid fermentation was enhanced by biofilm fermentation with plastic 
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composite-supports (PCS) chips containing 75% polypropylene (PP) and 25% agricultural 

material (w/w). Ho et al. [8,9] evaluated 24 PCS disc blends containing 50% PP and 50% 

agricultural materials for L(+)-Iactic acid biofilm fermentation in minimal medium with no 

pH control. Each PCS blend was evaluated for biofilm development, slow release of 

nutrients, surface contact angle, and hydrophobic compatibility with L. casei, porosity, and 

lactic acid absorption. The PCS disc that consistently demonstrated the highest performance 

contained 50% PP, 35% soybean hulls, 5% soybean flour, 5% yeast extract, 5% dried bovine 

albumen, and salts (SHSFYEBAS-PCS). Hence, the goal of this study was to compare the 

performance of the bioreactors with and without SHSFYEBAS-PCS in long-term biofilm 

repeated-batch fermentation at controlled pH (5) and temperature (37°C). 

Factors optimized were medium yeast extract concentraton, starting glucose 

concentration, and medium flow rate in the bioreactor recycling loop. In this stody, we 

demonstrated that, under optimized conditions, PCS-bioreactors significantly shortened the 

lag phase and total fermentation time. L casei maximum productivity was also improved 

through biofilm formation and complex-nutrients leaching of PCS. 

Materials and methods 

Plastic composite-supports 

The selected plastic composite-supports (PCS) discs and rings, which contained 50% 

polypropylene (PP) (Quantum USI Division, Cincinnati, OH), 35% ground (20 mesh) 

vacuum dried (48 h at 110°C and 30 inch Hg) soybean hulls (SH) (Cargill Soy Processing 

Plant, Iowa Falls, I A), 5% defatted soybean flour (SF) (Archer Daniels Midland, Decature, 
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IL), 5% yeast extract (YE) (Ardamine Z, Champlain Industries Inc., Clifton, NJ), 5% dried 

bovine albumin (BA) (American Protein Corp., Ames, lA) and mineral salts (S) (0.2% 

sodium acetate, 0.12% MgS04-7H20, and 0.006% MnS04-7H20) (w/w), were produced by 

high-temperature extrusion in a Brabender with PL2000 twin-screw co-rotating extruder 

(Model CTSE-V, C.W. Brabender Instruments, Inc., South Hackensack, NJ) as described by 

Ho et al. [8,9]. The PCS rings (1 cm ED, 1.5 cm OD) and discs (0.3 cm ED, 1.1 cm OD) were 

extruded through a 12.7-irmi OD large pipe die with 9.5-mm and 3.2-mm ID, respectively. 

Bacterial culture preparation 

Lactobacillus casei subsp. rhamnosus (ATCC 11443), a homofermenter of L(+)-lactic 

acid, was obtained from the American Type Culture Collection (Rockville, MD). Stock 

cultures were maintained in Lactobacillus MRS broth (Difco Laboratories, Detroit, MI) at 

4"'C with monthly transfers to fresh medium. All fermentation inocula were prepared by 

transferring 10 mL of an active L casei culture (18 h in MRS broth at 37°C) into 100 ml of 

lactic acid fermentation (LAF) medium (2% glucose [Glu], 0.4% yeast extract [YE] 

[Ardamine Z, Champlain Industries Inc., Clifton, NJ] and mineral salt solution [0.05% 

KH2PO4,0.05% K2HPO4,0.1% sodium acetate, 0.06% MgS04-7H20, and 0.003% 

MnS04-7H20]) [5] followed by an 18-h incubation at 37°C. 

Media Preparation 

All the dry ingredients of mineral-salt stock solution (0.05% ICH2PO4, 0.05% 

K2HPO4,0.1% sodium acetate, 0.06% MgS04-7H20, and 0.003% MnS04-7H20) were mixed 

with 80 L of deionized water in a B-Braun 100-D fermentor (New Brunswick Scientific, 

Allentown, PA) and sterilized with continuous agitation for 20 min at 121°C and 15 psi. The 
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pH of the mineral-salts stock solution was adjusted to pH 5 by 4 N NaOH. The 80 L of 

sterilized mineral-salt stock solution was then aseptically distributed into four separate 

sterilized (2 h at 121°C) 20-L carboys. The 70% glucose (Cerelose dextrose 2001 CPC 

Brand, International Ingredient Corporation, StLouis, MO), and the 10% yeast extract 

(Ardamine Z, Champlain Industries Inc., Clifton, NJ) stock solutions for each bioreactor were 

autoclaved (30 min at 121°C) separately in a 3-L carboy. Thiry-two liters of 5 N NH4OH was 

filtered sterilized with a 142 mm cellulosic triton free 0.45-nm filter (MSI, Westboro, MA) 

and aseptically distributed into four sterilized (1 h at 121°C) 10-L carboys. All stock solution 

delivery carboys contained an air vent capped with a 0.45-|im air filter and a medium 

delivery line with a liquid break to prevent reservoir contamination. 

Repeated-batch fermentation system 

Four sets of customized bioreactors (Fig. 1) were built for the long-termed repeated-

batch lactic-acid biofilm fermentation. As illustrated in Figure 1, each set of customized 

bioreactor was composed of a modified Nalgene magnetic culture vessel (MCV) (part no. 71-

2605-0001) (Nalge Nimc International, Milwaukee, WI), an alkaline reservoir, and a media 

formulation-mixing reservoir. The right arm of the MCV was equipped with a medixim feed 

line, a filter-sterilized (0.45 |im) carbon dioxide feed line, and a medium draining and 

sampling port The left arm of the MCV was covered by a screw cap, which acted as the 

SHSFYEBAS-PCS sampling port. The central opening of the MCV contained an 

innoculation port, a medium recycling line, an alkaline feed line, a condenser, and a pH 

probe. The alkaline feed line, the medium recycling line and the pH probe were ftirther 

connected to a PCS-free pH-controlled basket inside the MVC. The pH-controIled 
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customized basket was made from a 60-mL syringe with 100 bored holes (5-mm ID). A 

magnetic stirrer was placed at the bottom of the pH-controUed basket to enstire that the 

recycling medium was well mixed with the added alkaline for pH control. This allowed the 

immediate detection of alkaline addition by the pH probe and prevented the overshooting of 

the alkaline into the bioreactor. The system pH was constantly controlled at pH 5 ± 0.05. A 

hole was drilled on each side of the MVC (2 mm above the base) for comiecting a 1/4-inch 

barbed bulkhead fitting (Nalge Nimc International, Milwaukee, WI). The side of the 1/4-inch 

barbed bulkhead fitting facing the interior of the MVC was fitted with a section of the 

silicone tubing that stretched across the bottom of the MVC. The other side of the 1/4-inch 

barbed bulkhead fitting was linked to a pump, which was connected to the medium recycling 

line. 

The design of the medium recycling loop was to ensure the homogeneous mixing of 

the medium throughout the fermentation process. The refillable alkaline reservoir (a 50-mL 

burette) was connected to the 5 N NH4OH stock solution and to a pump for controlling the 

alkali addition. The alkaline reservoir showed the quantity and rate of alkaline consumption 

of each bioreactor and thus served as a quick indicator for fermentation performance. The 

aseptic media-mixing reservoir (a 500-mL burette) was connected to various stock solutions 

(the mineral salts, the 10% yeast extract, and the 70% glucose). The LAF medium 

formulation flexibility was achieved by the media- mixing reservoir, which permitted aseptic 

blending of different amoimt of glucose, yeast extact and mineral-salt stock solution. The 

space between the pH-controUed basket and the MCV was filled with 145.0 g of 

SHSFYEBAS-PCS (406 discs, 72.7 g and 377 rings, 72.3 g). The SHSFYEBAS-PCS were 
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sterilized dry (45 min at 121°C) in a 2-L fleaker beaker before transfer into the MVC. After 

the addition of the SHSFYEBAS-PCS into the MVC, 300 mL of deionized water was added, 

and the customized bioreactor was autoclaved (20 min at 12rC). The sterilized customized 

bioreactor was then aseptically connected to the 5 N NH4OH, glucose, yeast extract, and 

mineral-salts stock solution carboys. The soaking water in the bioreactor was subsequently 

drained through the medium draining port, and the fermentation system was ready to be filled 

with a specific medium blend for the repeated-batch fermentation. 

Repeated-batch fermentation 

The ratio of the culture-medium working volxime (600 mL) to the SHSFYEBAS-PCS 

bulk volume (560 mL) was kept at 1.07 throughout the study. The bioreactors were 

maintained at 37°C and controlled at pH 5. The entire 66 days' repeated-batch fermentation 

was divided into three phases. The first phase was to evaluate the effect of LAF-medium YE 

concentration (2,4, and 8%) on the performance of the L. casei. At this phase, the recyling 

flow rate and the starting glucose concentration of each bioreactor was 60 mL/min (6 

working volumes/h) and 8%, respectively. The LAF-YE concentrations of the three PCS-

bioreactors were kept constant at 2,4, and 8%, respectively, whereas the YE concentration of 

the control bioreactor (bioreactor with no PCS) varied randomly so that a total of two batch 

fermentations of 2,4, and 8% YE LAF-medium were run during this phase. 

The second phase was to determine the effect of medium recycling flow rate on the 

maximum productivity of each bioreactor under different LAF medium conditions. In this 

phase, an 8% starting glucose concentration was also used. The maximum productivity for 

each repeated-batch fermentation was determined by measuring the slope of at least three 
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points on the steepest region of the lactic acid production curve. The YE concentration of the 

three PCS bioreactors and the control bioreactor was kept at 2,4, 8, and 8 %, respectively. 

The medium-recyling flow rates evaluated were 60,30, 15, and 7.5 mL/min, which was 

equivalent to 6, 3,1.5, and 0.75 working volumes/h, respectively. 

The third phase was to analyze the effect of the starting glucose concentration on the 

bacterial performance. The YE concentration of each bioreactor was the same as that of the 

second phase. The medium recyling flow rate was kept at 60 mL/min. The six starting 

glucose-concentrations evaluated were 4, 6, 8,10, 12, and 16%. In addition, the control 

customized bioreactor performance (60 mL/min flow rate, 8% starting glucose and 0.8% YE 

concentration) was compared with a standard bench-top continuous-stir tank fermentor (2-L 

B-Braim Biostat M B-Braun, [New Brunswick Scientific, Allentown, PA]) (8% starting 

glucose and 1% YE concentration) at 37°C and controlled pH 5. 

BiqfUms formation analysis 

Five PCS discs and rings (approximately 1 g) were aseptically retrieved fi-om each 

bioreactor, and their biofilm population was determined by the stripping-sand method [8]. 

The sample fi-om each bioreactor was serially diluted, and colony-forming units (cfu) of the 

10' to 10' dilutions were detemiined by using Lactobacillus MRS agar spread plates in 

duplicate. Finally, the five sand-stripped discs and rings from each RBF reactor were rinsed 

with water, convection-oven-dried (70''C, 24 h), then reweighed. 

In addition, the PCS biofilm population from each bioreactor was also evaluated by 

scanning electron microscopy (SEM). Broken and whole PCS discs and rings were prepared 

following the procedures described by Ho et al. [8]. SEM micrographs of gold-coated 
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critical-point-dried supports were taken with a JEOL JSM-35 scanning electron microscope 

(JEOL, Japan) at 25 kV. Biofilm formation was further analyzed indirectly by measuring the 

amount of exopolysaccharides (total complex carbohydrates) present in the fermentation 

medium of the four bioreactors by comparing the reducing sugar concentration as determined 

by Somogyi Nelson and Phenol Sulfiiric assays [13]. If a polysaccharide was present, then 

the Phenol Sulfuric assay would hydrolyze the polymer to monosaccharide as indicated by a 

high concentration of reducing sugars, whereas Somogyi Nelson assay measured only the 

free reducing sugars in freeze-dried medium. The PCS total weight loss in each bioreactor 

was determined by measuring the difference between the PCS initial weight and its 

convection-dried (60''C overnight) weight after the 66 days' repeated-batch fermention. 

Fermented media analysis 

L(+)-Lactic acid and D-glucose concentrations were analyzed by a Waters high-

performance liquid chromatograph (HPLC) (Milford, MA) equipped with Waters model 401 

refractive index detector and a Bio-Rad Aminex HPX-87H column (300 x 7.8 mm) (Bio-Rad 

Chemical Division, Richmond, CA) using 0.012 N H2SO4 as the mobile phase. Suspended 

cells growth in the LAF medium was followed by measuring the absorbance at 620 nm with 

a Spectronic 20 spectrophotometer (Milton Roy Co., Rochester, NY). 

Results and discussion 

Effects of PCS on repeated-batch fermentation 

As shown in Fig.2, the fermentation in the 0.8%-YE PCS bioreactor and the 0.8%-YE 

control bioreactor both followed the in-between Type I (growth associated) and Type II 
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fermentation (nongrowth associated) pattern [2]. The production of lactic acid was at first 

directiy proportional to the medium cell density (i.e., growth associated). However, as the 

medium cell density curve plateaued, the lactic acid concentration still continued to increase 

(nongrowth associated). The nongrowth- associated fermentation probably was a result of 

the L. casei need to produced energy (ATP) for maintaining its internal pH by pumping out 

protons as the lactic acid concentration inside and outside the cell increased [7,11]. 

The final suspended cell absorbance at 620 nm of L. casei in the 0.2, 0.4, and 0.8%-

YE PCS bioreactor was 7.2,10, and 13.5 absorbance units, respectively (Fig.3). Similarly, 

the suspended cell absorbance at 620 mn of the control bioreactor was 5, 12.5, and 16 

absorbance units when the medium YE concentration was 0.2,0.4, and 0.8%, respectively 

(Fig. 3). This indicated that the medium YE concentration had a great impact on L casei 

growth. Although the glucose consumption and L(+)-lactic acid production rate of the 0.8%-

YE PCS bioreactor (maximum productivity: 3.6 g/L/h) were much faster than the 0.8%-YE 

control (maximum productivity: 2.5 g/L/h), the medium cell density of the 0.8%-YE PCS 

bioreactor (final cell absorbance at 620 imi: 13.5) was significantiy lower than that of the 

0.8%-YE control (final cell absorbance at 620 tmi: 16) (Fig. 2). This observation was also 

obtained for both the 0.4%-YE PCS and the control bioreactors (Fig. 3). This was an 

expected result, because the mediirai cell density does not represent the total cell mass of the 

PCS bioreactors, which consisted of suspended cells in the LAF medium and immobilized 

cells in the biofilms. However, in the 0.2%-YE LAF medium environment, the suspended 

cell density in the PCS bioreactor was higher than that of the control. This confirmed the 

slow release of the complex nutrient from the PCS to the suspended cell population. As the 
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YE concentratioii in the control bioreactor medium was reduced from 0.4 to 0.2%, the 

amount of complex nutrients was not enough for the normal performance of suspended L. 

casei, causing its cell density to drop abruptly by 2.5-fold (12.5 to 5, respectively). In 

contrast, the suspended L casei of the PCS bioreactor received complex nutrients from the 

leachate of the PCS discs and rings and exhibited only a L4-fold decrease (10 to 7.2) in its 

final cell density for the 0.4 to 0.2% YE medixmi. 

Figure 4 illustrated that the PCS bioreactors outperformed the control bioreactor 

under all YE medium concentrations. PCS bioreactors in 0.4 and 0.8%-YE LAP medium 

shortened the lag time by 3-fold (control:! 1 h, PCS:3.5 h) and 6-fold (control:9 h, PCS:1.5 

h), respectively. The PCS bioreactors, at all YE concentrations, increased lactic acid 

maximum productivity by 40-70%. Moreover, the total fermentation time of the 0.2,0.4, and 

0.8%-YE PCS bioreactors were 1.4,2.1, and 2.6 times faster than that of the control, 

respectively. Furthermore, the yield of the 0.2 and 0.8%-YE PCS bioreactors were 24 and 

6% higher than the yield of the control, respectively. Indeed, as indicated in Fig.5, the 

performance of the 0.8%-YE control bioreactor was only equivalent to the performance of 

the 0.4%-YE PCS bioreactor. This demonstrated the high potential of using a reduced 

complex nutrient medium in commercial batch fermentation with SHSFYEBAS-PCS discs 

and rings. 

Besides the complex nutrients-leaching benefit, the biofihn population on the surface 

of the PCS discs and rings also benefitted overall bioreactor performance. The biofihn 

population on the outer surface of the PCS in the 0.2,0.4, and 0.8%-YE PCS bioreactors was 

7.1 x 10®, 8.5 X 10', and 2.4 x 10'° cfu/g of supports, respectively. This sequential pattern of 
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the cfu/g of support with a corresponding increase in YE concentration parallels the previous 

cell density discussion. This was further demonstrated by the SEM micrographs (Fig. 6), 

where the biofilm on the interior surface of the SHSFYEBAS-PCS in the 0.8%-YE PCS 

bioreactor (Fig. 6C and D) appeared significantly denser than the PCS in the 0.2%-YE PCS 

bioreactors (Fig. 6E and F). The biofilm cells of 1. casei on the outer surface of the PCS 

were mostly present in streptobacillus form rather than its usual nonfilamentous bacillus form 

(Fig. 6 A and B). This might be a result of the hydraulic stress experienced by the biofilm 

cells [1]. Typical fibrillar extracellular materials (f) derived firom exopolysaccharides (EPS) 

of biofilms, as observed by Leppard and Bakke (1986) [1] and Ho et al. (1996) [8], were 

observed with SHSFYEBAS-PCS in the 0.2%-YE PCS bioreactor (Fig. 6F). The relative 

EPS present in the culture medium of the 0.2,0.4, and 0.8%-YE PCS bioreactor, were 11,12 

and 13 mg/g of fireeze-dried medium, respectively. The high correlation between the EPS 

value and the biofilm population of each bioreactor (r = 0.97) (Fig. 7) demonstrated that the 

EPS in the medium was also a good indicator of the biofilm pcpxilation on the supports. 

The weight loss of the PCS after 66 days of lactic-acid repeated-batch biofilm 

fermentation in the 0.2, 0.4, and 0.8%-YE PCS bioreactors was 16.0,15.5, and 13.8 

g/bioreactor, respectively. The weight losses due to the agricultural product leaching (3.2 

g/bioreactor) were similar in the three PCS bioreactors. Hence, the factor contributing to the 

smaller weight loss by the PCS bioreactors at different YE medium probably was due to the 

biofilm population present in the PCS discs and rings. This was supported by the high 

corrrelation between weight loss and biofilm population of the PCS bioreactors (r = -0.99) 

(Fig. 7). 
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The lactic-acid production curve of the 0.8%-YE control bioreactor and the 1%-YE 

B-Braun Biostat-M fermentor were similar (Fig. 5). This demonstrated that our customized 

bioreactor had equivalent pH control and medium mixing ability of a standard benchtop 

continuous-stir tank- fermentor. In addition, it also indicated that L. casei lactic acid 

fermentation could be operated at a lower medium YE concentration (0.8% instead of 1%). 

Effects of medium recycling rate and starting glucose concentration 

The recycling rate of the customized bioreactors affected the pH-controlling ability of 

the bioreactors. A high positive correlation (r = 0.95 to 0.99) between the maximum 

productivity of the bioreactors and the medium recycling rate was observed (Fig. 8). The 

diffusion of substrates, products, and complex nutrients in and out of the PCS was highly 

depended on the movement, the mixing, and the recycling rate of the medium. Therefore, the 

slopes of the correlation curve for the PCS bioreactors were steeper than that of the control. 

The effect of starting glucose concentration (SGC) on the maximum lactic acid 

productivity of Lcasei was shown in Fig. 9. The 0.8%-YE PCS bioreactor, the 0.4%-YE 

PCS bioreactor, and the 0.8%-YE control bioreactor all demonstrated an optimum starting 

glucose concentration peak in their curve patterns of 100,60, and 80 g/L glucose, 

respectively. The 0.8%-YE PCS bioreactor had its highest maximum productivity (4.3 g/L/h) 

at 100 g/L SGC, whereas the 0.8%-YE control (2.8 g/L/h) Was At 80 g/L SGC. This again 

illustrated the high stress-tolerant property of the biofihns. The 0.4%-YE PCS bioreactor had 

its fastest maximum productivity (3.0 g/L/h) at 60 g/L SGC. This demonstrated that the 

reduction in medium complex nutrients also lowered the ability of L. casei in withstanding 

the inliibitory effect resiilted from high SGC. This was supported by the decreasing trend 



www.manaraa.com

103 

demonstrated by the maximum productivity of the 0.2%-YE PCS bioreactors (2,4,6, and 8% 

SGC corresponded to 1.8,1.7,1.5, and 1.1 g/L/h, respectively). Substrate inhibition by high 

starting glucose concentration was also reported by Goncalves et al. (1991) [6]. 

From the results presented, it was clear that, with the complex-nutrients-leaching and 

biofilms-formation properties, the SHSFYEBAS-PCS discs and rings shortened the lactic 

acid fermentation lag phase time and total fermentation time, increased suspended and 

immobilized cells population, enhanced maximum productivity, and improved L. casei 

stress-tolerance ability to high starting glucose concentration and low medium yeast-extract 

concentrations. The shorter batch-fermentation time resulting from PCS biofilm 

fermentation will lower the overall production cost of lactic acid. The reduced complex-

nutrients concentration of the culture medium will enable the use of inexpensive complex 

nutrients (i.e. com-steep liquor, soybean flour, etc.) in lactic acid batch fermentation. In 

addition, the lower complex-nutrients concentration of the medium will also enhance the 

downstream recovery of lactic acid. Hence, employing the SHSFYEBAS-PCS in 

commercial repeated-batch biofilm lactic acid fermentation deserves strong consideration. 
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Figure legends list 

Fig. 1. Schematic diagram of the repeated-batch fermentation system. 

Fig. 2. Lactic acid production, glucose consumption, and L casei growth curve of PCS and 

suspended cells control bioreactor in 0.8% yeast-extract lactic acid fermentation 

medium. 

Fig. 3. Comparison between the L. casei cell density of the PCS bioreactors with the 

suspended cells control bioreactor under different yeast extract concentrations. 

Fig. 4. Comparison between the lactic acid production by L. casei of the PCS bioreactors 

with the suspended cell control bioreactor under different yeast extract concentrations. 

Fig. 5. Comparison between the lactic acid production of L. casei in PCS bioreactors, 

suspended cells control bioreactor, and 1-L B-Braun stir-tank fermentor at different 

yeast-extract concentrations. 

Fig. 6. Scanning electron micrographs of L. casei on the exterior or interior surfaces of 

SHSFYEBAS-PCS in different yeast-extract concentration media. (A) L. casei 

biofilms formed on the exterior surface of SHSFYEBAS-PCS in 0.8%-YE mediimi. 

Bar, 20 |im. Box in (A) was enlarged in (B) to show the long-rod filamentous 

morphology of L. casei. Bar, 3 fim. (C) L. casei biofilms formed on the interior 

surface of SHSFYEBAS-PCS in 0.8%-YE medium. Bar, 20 fim. Box in (C) was 

enlarged in (D) to show the short-rod filamentous morphology of L. casei. Bar, 3 ^m. 

(E) L. casei biofilms formed on the interior surface of SHSFYEBAS-PCS in 0.2%-

YE medium. Bar, 20 (im. Box in (E) was enlarged in (F) to show the fibrillar 

network (f) formed from the exopolysaccharide of L. casei biofilms. Bar, 3 fim. 
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Fig. 7. Relationship of the relative L. casei biofilm pcpxilation with the PCS weight loss after 

fermentation and the amount of exopolysaccharides present in the freeze-dried culture 

mediimi of 0.2,0.4, and 0.8%-YE PCS bioreactor. 

Fig. 8. Relationship between the maximum lactic acid productivity by L casei and working-

volume (600 mL) recycling rate of the PCS bioreactors and the suspended cells 

control bioreactor. 

Fig. 9. Effect of starting glucose concentration on the lactic acid maximum productivity by 

L. casei of the PCS bioreactors and the suspended cell control bioreactor. 
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Keys: 
1. Mineral salt solution 13. pH probe 
2. 70% glucose solution 14. Magnetic stirrer 
3. 10% yeast extract solution 15. Condenser 
4. Media mixing reservoir 16. Innoculation port 
5. Stopcock 17. 0.45-um sterilized filter 
6. Medium feed line 18. Plastic composite-supports 
7. CO, feed line 19. pH-controIIed basket 
8. Sampling and medium draining port 20. PCS sampling port 
9. 5 N NH4OH stock solution 21. Medium recycling line 
10. Alkaline reservoir 22. Peristaltic pump 
11. Alkaline feed line 23. Nalgene magnetic culture vessel 
12. pH meter 24. Extra port 

Fig. 1. Sciiematic diagram of the repeated-batch fermentation system. 
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Fig. 2. Lactic acid production, glucose consumption, and L. casei growth curve of PCS- and 
suspended cells control bioreactor in 0.8% yeast-extract lactic-acid fermentation medium. 
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Fig. 3. Comparison between the L. casei cell density of the PCS bioreactors with the 
suspended cells control bioreactor under different yeast extract concentrations. 
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Fig. 4. Comparison between the lactic acid production by L. casei of the PCS- bioreactors with the 
suspended cell control bioreactor under different yeast extract concentrations. 
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suspended cells control bioreactor, and l-Liter B-Braun stir- tank-fermentor at 
different yeast-extract concentration. 
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Fig. 6. Scanning electron micrographs of L. casei on the exterior or interior surfaces of 
SHSFYEBAS-PCS in different yeast-extract concentration media. (A) L casei 
biofilms formed on the exterior surface of SHSFYEBAS-PCS in 0.8%-YE medium. 
Bar, 20 |xm. Box in (A) was enlarged in (B) to show the long-rod filamentous 
morphology of L. casei. Bar, 3 |am. (C) L casei biofilms formed on the interior 
surface of SHSFYEBAS-PCS in 0.8%-YE medium. Bar, 20 [om. Box in (C) was 
enlarged in (D) to show the short-rod filamentous morphology of L. casei. Bar, 3 ^un. 
(E) L. casei biofilms formed on the interior surface of SHSFYEBAS-PCS in 0.2%-
YE medium. Bar, 20 |im. Box m (E) was enlarged in (F) to show the fibrillar 
network (f) formed from the exopolysaccharide of L. casei biofilms. Bar, 3 [om. 
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Fig.7. Relationship of the relative I. casei biofilm-population with the PCS weight loss after 
fermentation and the amount of exopolysaccharides present in the freeze-dried culture 
medium of 0.2, 0.4, and 0.8%-YE PCS bioreactor. 
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Fig.9. Effect of starting glucose concentration on the lactic-acid maximum productivity by 
L. casei of the PCS bioreactors and the suspended cell control bioreactor. 
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GENERAL CONCLUSIONS 

General discussion 

High-temperature extrusion by the twin-screw co-rotating extruder (Model CTSE-V, 

C.W. Brabender Instruments, Inc., South Hackensack, NJ) was able to produce ring and disc 

plastic composite-supports (PCS) containing a maximum of 50 % agricultural materials. 

Two replications of a 2^' design had efficiently evaluated the effects of soybean hulls, oat 

hulls, soybean flour, yeast extract, dried red blood cells, dried bovine albumen, and salts on 

the properties of PCS. 

Results showed that soybean hulls, yeast extract, and salts increased the biofilm 

population by reducing the hydrophobicity of the PCS. This was supported by the 

hydrophilic nature of the L. casei as its contact angle (27°) was determined to be less than 

40°. As indicated by the leached nitrogen and 260 nm absorbance of soaking solution, yeast 

extract was the most outstanding minor complex mgredient for supplying nitrogenous 

compound in the PCS. However, because of the fast leaching rate of yeast extract from the 

PCS, other minor agricultural ingredients such as dried bovine albumen and soybean flour 

were essential to ensure a gradual release of nitrogenous compounds form the PCS. In 

addition, the verification of absorption being the main mechanism of lactic acid accmulation 

in the PCS had greatly removed the worry of end product accumulation in the supports. 

Among the twenty-four blends of PCS evaluated, SHSFYEBAS-PCS containing 50 % 



www.manaraa.com

119 

polypropylene, 35 % soybean hulls, 5 % soybean flour, 5 % yeast extract, 5 % bovine 

albumen, and salts was demonstrated to have the highest lactic-acid concentration and cell 

density in the 1st and 20th simulated repeated-batch fermentation, the greatest viable attached 

cell counts, a relatively small contact angle, and a gradual complex nutrients releasing rate. 

Hence, SHSFYEBAS-PCS was selected for long-term repeated-batch fermenation study. 

The results of polypropylene-alone supports being imable to support any bacterial 

growth and bifilm formation in all batch-fermentation circumstances demonstrated that the 

addition of agricultural products to the PCS was essential. In addition, the results of the 

batch fermentation of the 24 PCS-blends demonstrated that both the medium suspended cells 

and the PCS attached cells contributed to the production of lactic acid. 

The long-term repeated-batch fermentation study showed that the operational life of 

the PCS was at least 66 days. The complex-nutrients-leaching and biofilms-formation 

properties of SHSFYEBAS-PCS discs and rings had shortened the lactic acid fermentation 

lag phase tiem and total fermentation time, increased suspended and immobilized celUs 

population, enhanced maximimum productivity, and improved L. casei stress-tolerance 

ability to high starting glucose concentration and low medium yeat-extract concentrations. 

These benefits greatly optimized the lactic acid fermenation process because the lower 

complex-nutrients concentration not only suggest the possibility of using inexpensive 

complex nutrients such as com-steep liquor, but also implied a less complex medium for the 

downstream recovery process of lactic acid. 
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Recommendations for future research 

The results obtained in this research demonstrated the optinii22.tion and improvement 

of lactic acid fermentation by the complex-nutrient release and biofilms formation properties 

of the plastic composite-supports (PCS). Kunduru and Pometto [48,49] also showed the 

enhancement of ethanol production by the PCS. Hence, the study of using PCS in other 

industrial organic-compounds (acetic acid, butanol, polyols, and succinic acid) fermentation 

is essential for the confirmation of the PCS applications and benefits to a variety of potential 

commodity chemicals.. 

All current lactic acid facilities are batch fermentation and a swith to continuous 

fermentation could provide some economic savings. Potentially biofilm-lactic-acid 

continuous fermentation with PCS is possible. Thus, the optimized conditions and 

informations obtained from the repeated-batch fermentation are very usefiil for developing a 

continuous fermentation process involving the PCS. In addition, increasing the lactic-acid 

repeated-batch fermentation to pilot-plant scale is also essential for verifying the 

practicability of applying the PCS in indiistrial lactic-acid fermentation. 
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